1
|
Asl AM, Abdouss M, Kalaee MR, Homami SS, Pourmadadi M. Targeted delivery of quercetin using gelatin/starch/Fe 3O 4 nanocarrier to suppress the growth of liver cancer HepG2 cells. Int J Biol Macromol 2024; 281:136535. [PMID: 39401620 DOI: 10.1016/j.ijbiomac.2024.136535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
To suppress HepG2 liver cancer cells, a nanocarrier (NC) consisting of Fe3O4, Gelatin (G), and Starch (S) was synthesized and characterized for targeted delivery of Quercetin (QC) drug. The spectra obtained from X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated that the nanoparticles (NP) in the NC are well-interconnected to each other and have formed a regular structure. Also, field emission scanning electron microscopy (FE-SEM) indicates a smooth and homogeneous surface of the synthesized NC. The results of the vibrating sample magnetometer (VSM) also corroborated the correctness of the synthesis of Fe3O4 NPs and Gelatin/Starch/Fe3O4@Quercetin NC (G/S/Fe3O4@QC) because the magnetic properties of Fe3O4 decreased with the addition of G/S@QC. Stability and particle size were determined by zeta potential and Dynamic light scattering (DLS). The percentage of drug loading and encapsulation efficiency of QC in the NC was 46.25 % and 87 %, respectively. QC profile release in acidic and natural environments showed controlled release and pH sensitivity of the NC. Cytotoxicity of L929 and HepG2 treated cells with the G/S/Fe3O4@QC was investigated by MTT staining, which agreed with the flow cytometry result. The results of Flowcytometry and MTT showed 43.5 % apoptosis and 42 % cytotoxicity in treated HepG2 cells by G/S/Fe3O4@QC, while it was not toxic to L929 normal cells. According to the results, G/S/Fe3O4@QC is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.
Collapse
Affiliation(s)
- Afsaneh Mojtahedzadeh Asl
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, P.O. Box 15875-4413, Tehran, Iran.
| | - Mohammad Reza Kalaee
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran; Research Center of Modeling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran
| |
Collapse
|
2
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Gao Y, Zheng L, Duan L, Bi J. Separable Metal-Organic Framework-Based Materials for the Adsorption of Emerging Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39024504 DOI: 10.1021/acs.langmuir.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Thousands of chemicals have been released into the environment in recent decades. The presence of emerging contaminants (ECs) in water has emerged as a pressing concern. Adsorption is a viable solution for the removal of ECs. Metal-organic frameworks (MOFs) have shown great potential as efficient adsorbents, but their dispersed powder form limits their practical applications. Recently, researchers have developed various separable MOF-based adsorbents to improve their recyclability. The purpose of this review is to summarize the latest developments in the construction of separable MOF-based adsorbents and their applications in adsorbing ECs. The construction strategies for separable MOFs are classified into four categories: magnetic MOFs, MOF-fiber composites, MOF gels, and binder-assisted shaping. Typical emerging contaminants include pesticides, pharmaceuticals and personal care products, and endocrine-disrupting compounds. The adsorption performance of different materials is evaluated based on the results of static and dynamic adsorption experiments. Additionally, the regeneration methods of MOF-based adsorbents are discussed in detail to facilitate effective recycling and reuse. Finally, challenges and potential future research opportunities are proposed, including reducing performance losses during the shaping process, developing assessment systems based on dynamic purification and real polluted water, optimizing regeneration methods, designing multifunctional MOFs, and low-cost, large-scale synthesis of MOFs.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Lisi Zheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Longying Duan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, P. R. China
| |
Collapse
|
4
|
Long L, Wang X, Fu H, Qu X, Zheng S, Xu Z. Robust Activity and Stability of P-Doped Fe-Carbon Composites Derived from MOF for Bromate Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21838-21848. [PMID: 38634144 DOI: 10.1021/acsami.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Iron-based materials are effective for the reductive removal of the disinfection byproduct bromate in water, while the construction of highly stable and active Fe-based materials with wide pH adaptability remains greatly challenging. In this study, highly dispersed iron phosphide-decorated porous carbon (Fe2P(x)@P(z)NC-y) was prepared via the thermal hydrolysis of Fe@ZIF-8, followed by phosphorus doping (P-doping) and pyrolysis. The reduction performances of Fe2P(x)@P(z)NC-y for bromate reduction were evaluated. Characterization results showed that the Fe, P, and N elements were homogeneously distributed in the carbonaceous matrix. P-doping regulated the coordination environment of Fe atoms and enhanced the conductivity, porosity, and wettability of the carbonaceous matrix. As a result, Fe2P(x)@P(1.0)NC-950 exhibited enhanced reactivity and stability with an intrinsic reduction kinetic constant (kint) 1.53-1.85 times higher than Fe(x)@NC-950 without P-doping. Furthermore, Fe2P(0.125)@P(1.0)NC-950 displayed superior reduction efficiency and prominent stability with very low Fe leaching (4.53-22.98 μg L-1) in a wide pH range of 4.0-10.0. The used Fe2P(0.125)@P(1.0)NC-950 could be regenerated by phosphating, and the regenerated Fe2P(0.125)@P(1.0)NC-950 maintained 85% of its primary reduction activity after five reuse cycles. The study clearly demonstrates that Fe2P-decorated porous carbon can be applied as a robust and stable Fe-based material in aqueous bromate reduction.
Collapse
Affiliation(s)
- Li Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xuechun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Wang K, Zhai S, Qin Y, Hao M, Su S, Li S, Tang X. Competitive coordination assembly of light-degradable gold nanocluster-intercalated metal organic frameworks for photoresponsive drug release. J Mater Chem B 2024; 12:4018-4028. [PMID: 38578014 DOI: 10.1039/d3tb03012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.
Collapse
Affiliation(s)
- Ke Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| | - Yuanyuan Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Mengke Hao
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Siqi Su
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Shuming Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P. R. China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P. R. China.
| |
Collapse
|
6
|
Picchi D, Biglione C, Horcajada P. Nanocomposites Based on Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy, Diagnosis, and Theragnostics. ACS NANOSCIENCE AU 2024; 4:85-114. [PMID: 38644966 PMCID: PMC11027209 DOI: 10.1021/acsnanoscienceau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
In the last two decades, metal-organic frameworks (MOFs) with highly tunable structure and porosity, have emerged as drug nanocarriers in the biomedical field. In particular, nanoscaled MOFs (nanoMOFs) have been widely investigated because of their potential biocompatibility, high drug loadings, and progressive release. To enhance their properties, MOFs have been combined with magnetic nanoparticles (MNPs) to form magnetic nanocomposites (MNP@MOF) with additional functionalities. Due to the magnetic properties of the MNPs, their presence in the nanosystems enables potential combinatorial magnetic targeted therapy and diagnosis. In this Review, we analyze the four main synthetic strategies currently employed for the fabrication of MNP@MOF nanocomposites, namely, mixing, in situ formation of MNPs in presynthesized MOF, in situ formation of MOFs in the presence of MNPs, and layer-by-layer methods. Additionally, we discuss the current progress in bioapplications, focusing on drug delivery systems (DDSs), magnetic resonance imaging (MRI), magnetic hyperthermia (MHT), and theragnostic systems. Overall, we provide a comprehensive overview of the recent advances in the development and bioapplications of MNP@MOF nanocomposites, highlighting their potential for future biomedical applications with a critical analysis of the challenges and limitations of these nanocomposites in terms of their synthesis, characterization, biocompatibility, and applicability.
Collapse
Affiliation(s)
| | - Catalina Biglione
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| |
Collapse
|
7
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
8
|
Asl AM, Kalaee M, Abdouss M, Homami SS. Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe 2O 3 nanoparticles. Int J Biol Macromol 2024; 257:128626. [PMID: 38056757 DOI: 10.1016/j.ijbiomac.2023.128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The common adverse effects of chemotherapy are the reason for the use of effective, natural drugs and targeted administration to specific areas. On the one hand, Quercetin (QC) has positive effects as a natural anticancer agent. On the other hand, Fe2O3, as nanoparticles (NP) with clinical properties and high porosity, can be a suitable carrier for drug loading and controlled release. In this study, QC was encapsulated in a synthesized Fe2O3/Starch/Polyvinyl alcohol nanocarrier (Fe2O3/S/PVA NC). Characterization of the NC was done by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), zeta potential and Dynamic light scattering (DLS). The percentage of drug loading (DLE) and encapsulation efficiency (EE) of QC in the NC containing Fe2O3 nanoparticles was 47 % and 86.50 %, respectively, while it was 36 % and 73 % in the NC without Fe2O3. QC profile release in acidic and natural mediums showed controlled release and pH dependency of the NC. Viability of L929 and HepG2 treated cells with the Fe2O3/S/PVA/QC was demonstrated by MTT staining which was in agreement with flow cytometry. The results show that Fe2O3/S/PVA is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.
Collapse
Affiliation(s)
- Afsaneh Mojtahedzadeh Asl
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Kalaee
- Department of Polymer and chemical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, P.O. Box 15875-4413, Tehran, Iran.
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran; Research Center of Modeling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Jiang Y, Liao H, Yan L, Jiang S, Zheng Y, Zhang X, Wang K, Wang Q, Han L, Lu X. A Metal-Organic Framework-Incorporated Hydrogel for Delivery of Immunomodulatory Neobavaisoflavone to Promote Cartilage Regeneration in Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46598-46612. [PMID: 37769191 DOI: 10.1021/acsami.3c06706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The treatment of osteoarthritis (OA)-related cartilage defects is a great clinical challenge due to the complex pathogenesis of OA and poor self-repair ability of cartilage tissue. Combining local and long-term anti-inflammatory therapies to promote cartilage repair is an effective method to treat OA. In this study, a zinc-organic framework-incorporated extracellular matrix (ECM)-mimicking hydrogel platform was constructed for the inflammatory microenvironment-responsive delivery of neobavaisoflavone (NBIF) to promote cartilage regeneration in OA. The NBIF was encapsulated in situ in zeolitic imidazolate frameworks (ZIF-8 MOFs). The NBIF@ZIF-8 MOFs were decorated with polydopamine and incorporated into a methacrylate gelatin/hyaluronic acid hybrid network to form the NBIF@ZIF-8/PHG hydrogel. The hydrogel featured excellent cell/tissue affinity, providing a favorable microenvironment for recruiting cells and cytokines to the defect sites. The hydrogel enabled the on-demand NBIF released in response to a weakly acidic microenvironment at the injured joint site to resolve inflammatory responses during the early stages of OA. Consequently, the cooperativity of the loaded NBIF and hydrogel synergistically modulated the immune response and assisted in cartilage defect repair. In summary, the NBIF@ZIF-8/PHG hydrogel delivery platform represents an effective treatment strategy for OA-related cartilage defects and may attract attentions for applications in other inflammatory diseases.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Haixia Liao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Liwei Yan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lu Han
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiong Lu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
10
|
Gulati S, Choudhury A, Mohan G, Katiyar R, Kurikkal M P MA, Kumar S, Varma RS. Metal-organic frameworks (MOFs) as effectual diagnostic and therapeutic tools for cancer. J Mater Chem B 2023. [PMID: 37377082 DOI: 10.1039/d3tb00706e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of multifunctional organometallic compounds that include metal ions combined with assorted organic linkers. Recently, these compounds have received widespread attention in medicine, due to their exceptional qualities, including a wide surface area, high porosity, outstanding biocompatibility, non-toxicity, etc. Such characteristic qualities make MOFs superb candidates for biosensing, molecular imaging, drug delivery, and enhanced cancer therapies. This review illustrates the key attributes of MOFs and their importance in cancer research. The structural and synthetic aspects of MOFs are briefly discussed with primary emphasis on diagnostic and therapeutic features, as well as their performance and significance in modern therapeutic methods and synergistic theranostic strategies including biocompatibility. This review offers cumulative scrutiny of the widespread appeal of MOFs in modern-day oncological research, which may stimulate further explorations.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Riya Katiyar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | | | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565 905 São Carlos - SP, Brazil.
| |
Collapse
|
11
|
Yang L, Chen Y, Jia Z, Yuan X, Liu J. Electrostatic assembly of gold nanoparticle and metal-organic framework nanoparticles attenuates amyloid β aggregate-mediated neurotoxicity. J Mater Chem B 2023; 11:4453-4463. [PMID: 37158054 DOI: 10.1039/d3tb00281k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The deposition of amyloid β (Aβ) is a conventional pathological hallmark of Alzheimer's disease (AD). Consequently, the inhibition of Aβ aggregation combined with the disaggregation of Aβ fibrils is an important therapeutic method for AD treatment. In this study, a gold nanoparticle-decorated porous metal organic framework MIL-101(Fe) (AuNPs@PEG@MIL-101) was created as an Aβ inhibitor. The high positively charged MIL-101 induced a high number of Aβ40 to be absorbed or aggregated on the surface of nanoparticles. In addition, AuNPs improved the surface property of MIL-101, causing it to uniformly bind Aβ monomers and Aβ fibrils. Thus, this framework can efficiently suppress extracellular Aβ monomer fibrillation and disrupt the preformed Aβ fibers. AuNPs@PEG@MIL-101 also decreases intracellular Aβ40 aggregation and the amount of Aβ40 immobilized on the cell membrane, thus protecting PC12 cells from Aβ40-induced microtubular defects and cell membrane damage. In summary, AuNPs@PEG@MIL-101 shows great potential for application in AD therapy.
Collapse
Affiliation(s)
- Licong Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yutong Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Xiaoyu Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Moharramnejad M, Malekshah RE, Ehsani A, Gharanli S, Shahi M, Alvan SA, Salariyeh Z, Azadani MN, Haribabu J, Basmenj ZS, Khaleghian A, Saremi H, Hassani Z, Momeni E. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci 2023; 316:102908. [PMID: 37148581 DOI: 10.1016/j.cis.2023.102908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Moharramnejad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; Young Researcher and Elite Group, University of Qom, Qom, Iran
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Sajjad Gharanli
- Department of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
| | - Mehrnaz Shahi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Saeed Alvani Alvan
- Bachelor of Chemical Engineering, Azad Varamin University, Peshwa branch, Iran
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Elham Momeni
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
14
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
15
|
Zhang W, Lu J, Liu S, Wang C, Zuo Q, Gong L. The Potential of Spent Coffee Grounds @ MOFs Composite Catalyst in Efficient Activation of PMS to Remove the Tetracycline Hydrochloride from an Aqueous Solution. TOXICS 2023; 11:88. [PMID: 36850964 PMCID: PMC9965720 DOI: 10.3390/toxics11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of Tetracycline Hydrochloride (TC) from wastewater, which is a difficult process, has attracted increasing attention. Aiming to synchronously achieve the goal of natural waste utilization and PMS activation, we have combined the MOFs material with waste coffee grounds (CG). The catalytic activity of the CG@ZIF-67 composite in the TC removal process was thoroughly evaluated, demonstrating that the TC removal rate could reach 96.3% within 30 min at CG@ZIF-67 composite dosage of 100 mg/L, PMS concertation of 1.0 mM, unadjusted pH 6.2, and contact temperate of 293.15 K. The 1O2 and ·SO4- in the CG@ZIF-67/PMS/TC system would play the crucial role in the TC degradation process, with 1O2 acting as the primary ROS. The oxygen-containing functional groups and graphite N on the surface of CG@ZIF-67 composite would play a major role in efficiently activating PMS and correspondingly degrading TC. In addition, the CG@ZIF-67/PMS/TC system could withstand a wide pH range (3-11). The application of CG in preparing MOF-based composites will provide a new method of removing emerging pollutants from an aqueous solution.
Collapse
Affiliation(s)
- Wei Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
| | - Jiajia Lu
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Shoushu Liu
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Chen Wang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Qiting Zuo
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
| |
Collapse
|
16
|
Gharehdaghi Z, Naghib SM, Rahimi R, Bakhshi A, Kefayat A, shamaeizadeh A, Molaabasi F. Highly improved pH-Responsive anticancer drug delivery and T2-Weighted MRI imaging by magnetic MOF CuBTC-based nano/microcomposite. Front Mol Biosci 2023; 10:1071376. [PMID: 37091862 PMCID: PMC10114589 DOI: 10.3389/fmolb.2023.1071376] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/26/2023] [Indexed: 04/25/2023] Open
Abstract
Cu-BTC framework has received a considerable attention in recent years as a drug carrier candidate for cancer treatment due to its unique structural properties and promising biocompatibility. However, its intrinsic deficiency for medical imaging potentially limits its bioapplications; To address this subject, a magnetic nano/microscale MOF has been successfully fabricated by introducing Fe3O4 nanoparticles as an imaging agent into the porous isoreticular MOF [Cu3(BTC)2] as a drug carrier. The synthesized magnetic MOFs exhibits a high loading capacity (40.5%) toward the model anticancer DOX with an excellent pH-responsive drug release. The proposed nanocomposite not only possesses large surface area, high magnetic response, large mesopore volume, high transverse relaxivity (r 2) and good stability but also exhibits superior biocompatibility, specific tumor cellular uptake, and significant cancer cell viability inhibitory effect without any targeting agent. It is expected that the synthesized magnetic nano/microcomposite may be used for clinical purposes and can also serve as a platform for photoactive antibacterial therapy ae well as pH/GSH/photo-triple-responsive nanocarrier.
Collapse
Affiliation(s)
- Zahra Gharehdaghi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
- *Correspondence: Rahmatollah Rahimi, ; Fatemeh Molaabasi,
| | - Atin Bakhshi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Amirhosein Kefayat
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Armin shamaeizadeh
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- *Correspondence: Rahmatollah Rahimi, ; Fatemeh Molaabasi,
| |
Collapse
|
17
|
Le BT, Nguyen CQ, Nguyen PT, Ninh HD, Le TM, Nguyen PTH, La DD. Fabrication of Porous Fe-Based Metal-Organic Complex for the Enhanced Delivery of 5-Fluorouracil in In Vitro Treatment of Cancer Cells. ACS OMEGA 2022; 7:46674-46681. [PMID: 36570299 PMCID: PMC9773331 DOI: 10.1021/acsomega.2c05614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic complexes are one of the most studied materials in the last few decades, which are fabricated from organic ligands and metal ions to form robust frameworks with porous structures. In this work, iron-1,4-benzenedicarboxylic-polyethylene glycol (Fe-BDC-PEG) with a porous structure was successfully constructed by an iron(III) benzene dicarboxylate and polyethylene glycol diacid. The drug-delivery properties of the resultant Fe-BDC-PEG were tested for the loading and release of the 5-fluorouracil compound. The maximal loading capacity of Fe-BDC-PEG for 5-fluorouracil was determined to be 348.22 mg/g. The drug release of 5-fluorouracil-loaded Fe-BDC-PEG after 7 days was 92.69% and reached a maximum of 97.52% after 10 days. The 7 day and acute oral toxicity of Fe-BDC-PEG in mice were studied. The results show that no reasonable change or mortality was observed upon administration of Fe-BDC-PEG complex in mice at 10 g/kg body weight. When the uptake of Fe-BDC-PEG particles in mice was continued for 7 consecutive days, the mortality, feed consumption, body weight, and daily activity were negligibly changed.
Collapse
Affiliation(s)
- Bac Thanh Le
- Institute
of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi100000, Vietnam
| | - Chau Que Nguyen
- Hanoi
University of Pharmacy, Phan Chu Trinh, Hoan Kiem, Ha Noi100000, Vietnam
| | - Phuong Thi Nguyen
- Institute
of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi100000, Vietnam
| | - Ha Duc Ninh
- Institute
of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi100000, Vietnam
| | - Tri Minh Le
- Institute
of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi100000, Vietnam
| | | | - Duong Duc La
- Institute
of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi100000, Vietnam
| |
Collapse
|
18
|
Yusuf V, Malek NI, Kailasa SK. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS OMEGA 2022; 7:44507-44531. [PMID: 36530292 PMCID: PMC9753116 DOI: 10.1021/acsomega.2c05310] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 05/31/2023]
Abstract
Metal ions or clusters that have been bonded with organic linkers to create one- or more-dimensional structures are referred to as metal-organic frameworks (MOFs). Reticular synthesis also forms MOFs with properly designated components that can result in crystals with high porosities and great chemical and thermal stability. Due to the wider surface area, huge pore size, crystalline nature, and tunability, numerous MOFs have been shown to be potential candidates in various fields like gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This study provides a quick overview of the current MOF synthesis techniques in order to familiarize newcomers in the chemical sciences field with the fast-growing MOF research. Beginning with the classification and nomenclature of MOFs, synthesis approaches of MOFs have been demonstrated. We also emphasize the potential applications of MOFs in numerous fields such as gas storage, drug delivery, rechargeable batteries, supercapacitors, and separation membranes. Lastly, the future scope is discussed along with prospective opportunities for the synthesis and application of nano-MOFs, which will help promote their uses in multidisciplinary research.
Collapse
Affiliation(s)
- Vadia
Foziya Yusuf
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Naved I. Malek
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| |
Collapse
|
19
|
A new mode of luminescence in lanthanide oxalates metal–organic frameworks. Sci Rep 2022; 12:18812. [PMID: 36335280 PMCID: PMC9637143 DOI: 10.1038/s41598-022-23658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Two lanthanide metal–organic frameworks [Ln-MOFs, Ln = Eu(III), Tb(III)] composed of oxalic acid and Ln building units were hydrothermally synthesized and fully characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Furthermore, their magnetic susceptibility measurements were obtained using SQUID based vibrating sample magnetometer (MPMS 3, Quantum Design). Both Ln-MOFs exhibited highly efficient luminescent property. Solid-state photoluminescence (PL) measurements revealed phosphorescence emission bands of Eu-MOF and Tb-MOF centered at 618 nm (red emission) and 550 nm (green emission) upon excitation at 396 nm and 285 nm, respectively. Eu-MOF and Tb-MOF displayed a phosphorescence quantum yield of 53% and 40%, respectively. Time-resolved PL analyses showed very long lifetime values, at 600 and 1065 ± 1 µs for Eu-MOF and Tb-MOF, respectively. Calculations performed by density functional theory indicated a charge transfer form metal centres to the ligand which was in good agreement with the experimental studies. Therefore, this new mode of highly photoluminescent MOF materials is studied for the first time which paves the way for better understanding of these systems for potential applications.
Collapse
|
20
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Akbar M, Badar M, Zaheer M. Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal-Organic Framework. ACS OMEGA 2022; 7:32588-32598. [PMID: 36120053 PMCID: PMC9475617 DOI: 10.1021/acsomega.2c04144] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Along with the increasing incidence of cancer and drawbacks of traditional drug delivery systems (DDSs), developing novel nanocarriers for sustained targeted-drug release has become urgent. In this regard, metal-organic frameworks (MOFs) have emerged as potential candidates due to their structural flexibility, defined porosity, lower toxicity, and biodegradability. Herein, a FeMn-based ferromagnetic MOF was synthesized from a preassembled Fe2Mn(μ3-O) cluster. The introduction of the Mn provided the ferromagnetic character to FeMn-MIL-88B. 5-Fluoruracil (5-FU) was encapsulated as a model drug in the MOFs, and its pH and H2S dual-stimuli responsive controlled release was realized. FeMn-MIL-88B presented a higher 5-FU loading capacity of 43.8 wt % and rapid drug release behavior in a tumor microenvironment (TME) simulated medium. The carriers can rapidly release loaded drug of 70% and 26% in PBS solution (pH = 5.4) and NaHS solution (500 μM) within 24 h. The application of mathematical release models indicated 5-FU release from carriers can be precisely fitted to the first-order, second-order, and Higuchi models of release. Moreover, the cytotoxicity profile of the carrier against human embryonic kidney cells (HEK293T) suggests no adverse effects up to 100 μg/mL. The lesser toxic effect on cell viability can be attributed to the low toxicity values [LD50 (Fe) = 30 g·kg-1, (Mn) = 1.5 g·kg-1, and (terephthalic acid) = 5 g·kg-1] of the MOFs structural components. Together with dual-stimuli responsiveness, ferromagnetic nature, and low toxicity, FeMn-MIL-88B MOFs can emerge as promising carriers for drug delivery applications.
Collapse
Affiliation(s)
- Muhammad
Usman Akbar
- Gomal
Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail
Khan, KPK 29050, Pakistan
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences (LUMS), Lahore 54792, Pakistan
| | - Muhammad Badar
- Gomal
Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail
Khan, KPK 29050, Pakistan
| | - Muhammad Zaheer
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences (LUMS), Lahore 54792, Pakistan
| |
Collapse
|
22
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
23
|
Zhai X, Han J, Shao L, Fu Y, Chen J. Construction of a Hierarchical Structure of Bimetallic Oxide Derived from Metal-Organic Frameworks. Inorg Chem 2022; 61:8043-8052. [PMID: 35543510 DOI: 10.1021/acs.inorgchem.2c00893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bimetallic oxides are a class of promising advanced functional metal nanomaterials, especially in terms of the sophisticated hierarchical structure of bimetallic oxide, which not only is in favor of enhancing their intrinsic physiochemical properties because of more accessible actives sites but also is capable of integrating the synergistic effect between two metals. Herein, we report a novel strategy to controllably construct bimetallic CuO/ZnO nanomaterials with sophisticated hierarchical structure through a pseudomorphic transformation and subsequent calcination process. The resulting unique hierarchical structure of ZnO/CuO is primarily constituted of a nanosphere and a rod grafted in a microscale cube with multidimensional size, which thus results in excellent dispersion, superior charge-transport capability, and abundant accessible active sites. Impressively, the optimized hierarchical structure product of CuO/ZnO (4:1) demonstrates an excellent glucose detection performance with a rapid response time, a wide linear range, a low detection limit, and strong antiinterference ability, realizing more advantages than commercial CuO or ZnO materials and shedding light on the positive correlation of the structure and performance. This study provides a new strategy for the controllable fabrication of the sophisticated hierarchical structure of bimetallic oxide nanomaterials.
Collapse
Affiliation(s)
- Xu Zhai
- College of Chemistry and Chemical Engineering, Tarim University, Alaer 843300, China.,Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingrui Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junyi Chen
- College of Chemistry and Chemical Engineering, Tarim University, Alaer 843300, China
| |
Collapse
|
24
|
Zhai X, Fu Y. Preparation of Hierarchically Porous Metal-Organic Frameworks via Slow Chemical Vapor Etching for CO 2 Cycloaddition. Inorg Chem 2022; 61:6881-6887. [PMID: 35476935 DOI: 10.1021/acs.inorgchem.2c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) are a class of promising functional material with micropores, mesopores, and/or macropores, which can address the issue of slow mass transfer and less exposed active sites for primitive microporous MOFs. Despite many attempts that have been achieved through a variety of techniques to date, there is still a myriad of spaces that urgently need to be exploited. In this work, we report the novel synthesis of HP-MOFs via slow chemical steam etching. The preparation process can be subtly achieved using water vapor as an etchant; meanwhile, the addition of ethanol into the vapor atmosphere is carried out because it can stabilize the MOF framework well with its hydrophobic alkane tails, thereby slowing the etching rate toward MOFs, successfully realizing the controllable etching manner of MOF components. Furthermore, the joint influence of the water content and etching temperature on the MOF backbone structure etched has thus been investigated in detail. Impressively, we can harvest desired HP-MOFs with the retained crystalline structure at a water content of 50% and an etching temperature of 120 °C. The resulting HK-120/50 product etched exhibits excellent catalytic activity and stability in [2 + 3] cycloaddition of CO2 than pristine MOF, which can be attributed to the more exposure of active sites and the acceleration of mass transportation across the entire MOF skeleton. Noteworthy, the strategy proposed in this study may be extended to other HP-MOF construction systems due to the lability of most MOFs toward the chemical water vapor.
Collapse
Affiliation(s)
- Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
25
|
Wang Z, Miao R, He L, Guan Q, Shi Y. Green synthesis of MIL-100(Fe) derivatives and revealing their structure-activity relationship for 2,4-dichlorophenol photodegradation. CHEMOSPHERE 2022; 291:132950. [PMID: 34801575 DOI: 10.1016/j.chemosphere.2021.132950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
MIL-100(Fe), a kind of iron-based metal-organic framework materials (MOFs), can be synthesized at room temperature or hydrothermal conditions, which are promising precursor materials for preparing photocatalysts to degrade some recalcitrant chlorophenols in industrial wastewater. However, the relationship between the structural characterization of MIL-100(Fe) derivatives and their photodegradation behavior of chlorophenol pollutants is still unclear. Thus, in this work, a porous Z-scheme α-Fe2O3/MIL-100(Fe) composite was successfully fabricated via partial-pyrolysis of MIL-100(Fe) precursor synthesized through green synthesis route, which was further used for degrading high-concentration of 2,4-dichlorophenol under visible-light illumination (λ > 420 nm). The effects of synthesis route and pyrolysis temperature of MIL-100(Fe) on the degradation efficiencies of as-derived materials for 2,4-dichlorophenol were investigated. The structure-activity relationship was illuminated in detail. Otherwise, the influence of several process factors, i.e., initial concentration and pH of the 2,4-dichlorophenol solution, catalyst dosage on the degradation efficiency of 2,4-dichlorophenol has also been performed. The removal efficiency of 2,4-dichlorophenol with the initial concentration of 100 mg L-1 reached up to 87.65% under optimized conditions. Lastly, the possible mechanism was explored based on trapping experiments and some other characterization results. The study in this paper not only exhibited new insight into the modified α-Fe2O3 material with high photocatalytic activity but also provided a promising method for treating wastewater containing 2,4-dichlorophenol or other similar organic pollutants.
Collapse
Affiliation(s)
- Zhijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China; Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China; College of Chemistry and Environmental Science, Qujing Normal University, 655011, Qujing, China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Qingqing Guan
- Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China.
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| |
Collapse
|
26
|
Shahmirzaee M, Hemmati-Sarapardeh A, Husein MM, Schaffie M, Ranjbar M. Magnetic γ-Fe 2O 3/ZIF-7 Composite Particles and Their Application for Oily Water Treatment. ACS OMEGA 2022; 7:3700-3712. [PMID: 35128278 PMCID: PMC8811769 DOI: 10.1021/acsomega.1c06382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 05/23/2023]
Abstract
Crude oil spills are about global challenges because of their destructive effects on aquatic life and the environment. The conventional technologies for cleaning crude oil spills need to study the selective separation of pollutants. The combination of magnetic materials and porous structures has been of considerable interest in separation studies. Here, γ-Fe2O3/ZIF-7 structures were prepared by growing a ZIF-7 layer onto supermagnetic γ-Fe2O3 nanoparticles with an average size of 18 ± 0.9 nm in situ without surface modification at low temperatures. The product composite particles were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry, and N2 adsorption/desorption isotherms. The analyses revealed a time growth-dependent ZIF-7 rod thickness with abundant nanocavities. The γ-Fe2O3/ZIF-7 surface area available for sorption (647 m2/g) is ∼12-fold higher than that of the γ-Fe2O3 nanoparticles. Moreover, the crystal structure of γ-Fe2O3 remained essentially unchanged following ZIF-7 coating, whereas the superparamagnetism declined depending on the coating time. The γ-Fe2O3/ZIF-7 particles were highly hydrophobic and selectively and rapidly (<5 min) sorbed crude oil and other hydrocarbon pollutants from water. As high as 6 g/g of the hydrocarbon was sorbed by the γ-Fe2O3/ZIF-7 particles immersed into the hydrocarbon. A coefficient of determination, R 2 2, consistently >0.96 at all pollutant concentrations suggested a pseudo-second-order sorption kinetics. The thermal stability and 15 cycles of use and reuse confirmed a robust γ-Fe2O3/ZIF-7 sorbent.
Collapse
Affiliation(s)
- Mozhgan Shahmirzaee
- Nanotechnology
Group, Department of Materials Engineering and Metallurgy, Shahid Bahonar University of Kerman, Kerman 76169-1411, Iran
| | | | - Maen M. Husein
- Department
of Chemical & Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Mahin Schaffie
- Department
of Petroleum Engineering, Shahid Bahonar
University of Kerman, Kerman 76169-1411, Iran
| | - Mohammad Ranjbar
- Mineral
Industries Research Center, Shahid Bahonar
University of Kerman, Kerman 76169-1411, Iran
| |
Collapse
|
27
|
Vasylevskyi SI, Raffy G, Salentinig S, Del Guerzo A, Fromm KM, Bassani DM. Multifunctional Anthracene-Based Ni-MOF with Encapsulated Fullerenes: Polarized Fluorescence Emission and Selective Separation of C 70 from C 60. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1397-1403. [PMID: 34967204 DOI: 10.1021/acsami.1c19141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an anthracene-based Ni-MOF [Ni(II) metal-organic framework, {[Ni(μ2-L)2Cl2]·x(C6H6)·y(MeOH)}n (1), L = anthracene-9,10-diylbis(methylene)diisonicotinate] whose crystal structure reveals the presence of hexagonal channels with a pore size of 1.4 nm that can accommodate guests such as C60 and C70. Both confocal fluorescence and Raman microscopy results are in agreement with a homogeneous distribution of fullerenes throughout the single crystals of 1. Efficient energy transfer from 1 to the fullerenes was observed, which emitted partially polarized fluorescence emission. Stronger binding between 1 and C70 versus C60 was confirmed from HPLC analysis of the dissolved material and provides a basis for the selective retention of C70 in liquid chromatography columns packed with 1.
Collapse
Affiliation(s)
- Serhii I Vasylevskyi
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Guillaume Raffy
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Stefan Salentinig
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - André Del Guerzo
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Katharina M Fromm
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - Dario M Bassani
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| |
Collapse
|
28
|
Nguyen PH, Le BT, Ninh HD, La DD. Ultrasonic-Assisted Synthesis of Fe-BTC-PEG Metal-Organic Complex: An Effective and Safety Nanocarrier for Anticancer Drug Delivery. ACS OMEGA 2021; 6:33419-33427. [PMID: 34926891 PMCID: PMC8674903 DOI: 10.1021/acsomega.1c03951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/18/2021] [Indexed: 05/08/2023]
Abstract
The porous metal-organic complexes are emerging as novel carriers for effective and safe delivery of drugs for cancer treatment, minimizing the side effect of drug overuse during cancer treatment. This study fabricated the Fe-BTC-PEG metal-organic complex from Fe ions, trimesic acid, and poly(ethylene glycol) as precursors using an ultrasonic-assisted method. The morphology and crystallinity of the resultant complex were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. FTIR spectroscopy was employed to investigate the functional groups on the surface of the Fe-BTC-PEG complex. The result showed that the prepared Fe-BTC-PEG complex was in particle form with low crystallinity and diameter ranging from 100 to 200 nm. The obtained Fe-BTC-PEG complex exhibited a high loading capacity for the 5-fluorouracil (5-FU) anticancer drug with a maximal capacity of 364 mg/g. The releasing behavior of 5-fluorouracil from the 5-FU-loaded Fe-BTC-PEG complex was studied. Notably, the acute oral toxicity of the Fe-BTC-PEG metal-organic complex was also carried out to evaluate the safety of the material in practical application.
Collapse
|
29
|
Javanbakht S, Pooresmaeil M, Namazi H, Heydari A. Facile synthesis of Zn-based metal-organic framework in the presence of carboxymethyl cellulose: A safe carrier for ibuprofen. Int J Biol Macromol 2021; 191:531-539. [PMID: 34571120 DOI: 10.1016/j.ijbiomac.2021.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022]
Abstract
Fabrication of porous materials with a high surface area affords a great interest to achieve a system with a prolonged drug release manner. In this context, the subject of this work is to describe a novel green one-pot synthesis route for the growth of metal-organic framework (MOF) from zinc metal (Zn) and 1, 4-benzene dicarboxylic acid (BDC) in the vicinity of the carboxymethyl cellulose (CMC), which homogeneously confined in the biopolymeric chains. The synthesized Zn (BDC)@CMC was characterized and confirmed using different analyses. N2 adsorption/desorption isotherms determined the mean diameter of pore size of about 2.3993 nm. Ibuprofen (IBU) as a model drug was highly loaded to the Zn(BDC)@CMC by immersing in the drug solution; 50.95%. The in vitro IBU release study indicated that the Zn(BDC)@CMC has more attractive performances than pristine Zn(BDC). The IBU release occurred via the Fickian mechanism. Isotherm studies showed that the IBU adsorption on obeys from Langmuir isotherm; R2 0.9623. The MTT results revealed the HEK 293A cell viability of higher than 90% for Zn(BDC)@CMC that confirms its cytocompatibility. Overall, obtained results confirm the functionality of CMC biopolymer for in situ growth of MOF in the presence of it due to having the reactive nature.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano Biopolymers, Faculty of Chemistry, University of Tabriz, P. O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
30
|
Ahmadi M, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H. Ultra pH-sensitive nanocarrier based on Fe 2O 3/chitosan/montmorillonite for quercetin delivery. Int J Biol Macromol 2021; 191:738-745. [PMID: 34517028 DOI: 10.1016/j.ijbiomac.2021.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Harmful side effects of the chemotherapeutic agent have been investigated in many recent studies. Since Fe2O3 nanoparticles have proper porosity, they are capable for loading noticeable amount of drugs and controlled release. We developed Fe2O3/chitosan/montmorillonite nanocomposite. Quercetin (QC) nanoparticles, which have fewer side effects than chemical anti-tumor drugs, were encapsulated in the synthesized nanocarrier and were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and zeta potential. For quercetin, the encapsulation efficiency and the loading efficiency of the drug in Fe2O3-CS-MMT@QC were found to be about 94% and 57%, respectively. The release profile of QC in different mediums indicated pH-dependency and controlled release of the nanocomposite, adhering to The Weibull kinetic model. Biocompatibility of the Fe2O3/CS/MMT nanoparticles against the MCF-7 cells was shown by MTT assay and confirmed by flow cytometry. These data demonstrate that the designed Fe2O3-CS-MMT@QC would have potential drug delivery to treat cancer cells.
Collapse
Affiliation(s)
- Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran
| | - Sohrab Ali Ghorbanian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
31
|
Recent Advances in Metal-Based Magnetic Composites as High-Efficiency Candidates for Ultrasound-Assisted Effects in Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910461. [PMID: 34638801 PMCID: PMC8508863 DOI: 10.3390/ijms221910461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-based magnetic materials have been used in different fields due to their particular physical or chemical properties. The original magnetic properties can be influenced by the composition of constituent metals. As utilized in different application fields, such as imaging monitoring, thermal treatment, and combined integration in cancer therapies, fabricated metal-based magnetic materials can be doped with target metal elements in research. Furthermore, there is one possible new trend in human activities and basic cancer treatment. As has appeared in characterizations such as magnetic resonance, catalytic performance, thermal efficiency, etc., structural information about the real morphology, size distribution, and composition play important roles in its further applications. In cancer studies, metal-based magnetic materials are considered one appropriate material because of their ability to penetrate biological tissues, interact with cellular components, and induce noxious effects. The disruptions of cytoskeletons, membranes, and the generation of reactive oxygen species (ROS) further influence the efficiency of metal-based magnetic materials in related applications. While combining with cancer cells, these magnetic materials are not only applied in imaging monitoring focus areas but also could give the exact area information in the cure process while integrating ultrasound treatment. Here, we provide an overview of metal-based magnetic materials of various types and then their real applications in the magnetic resonance imaging (MRI) field and cancer cell treatments. We will demonstrate advancements in using ultrasound fields co-worked with MRI or ROS approaches. Besides iron oxides, there is a super-family of heterogeneous magnetic materials used as magnetic agents, imaging materials, catalytic candidates in cell signaling and tissue imaging, and the expression of cancer cells and their high sensitivity to chemical, thermal, and mechanical stimuli. On the other hand, the interactions between magnetic candidates and cancer tissues may be used in drug delivery systems. The materials’ surface structure characteristics are introduced as drug loading substrates as much as possible. We emphasize that further research is required to fully characterize the mechanisms of underlying ultrasounds induced together, and their appropriate relevance for materials toxicology and biomedical applications.
Collapse
|
32
|
Braglia L, Tavani F, Mauri S, Edla R, Krizmancic D, Tofoni A, Colombo V, D’Angelo P, Torelli P. Catching the Reversible Formation and Reactivity of Surface Defective Sites in Metal-Organic Frameworks: An Operando Ambient Pressure-NEXAFS Investigation. J Phys Chem Lett 2021; 12:9182-9187. [PMID: 34528795 PMCID: PMC9282676 DOI: 10.1021/acs.jpclett.1c02585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal-organic framework HKUST-1. We obtained direct evidence that Cu+ defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+ dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+ paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2 may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+ sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+ complexes and their reversible restoration upon exposure to gaseous CO2.
Collapse
Affiliation(s)
- Luca Braglia
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Francesco Tavani
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Mauri
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Raju Edla
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany
| | | | - Alessandro Tofoni
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Colombo
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Piero Torelli
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| |
Collapse
|
33
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
34
|
Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. NANO RESEARCH 2021; 15:739-757. [PMID: 34254012 PMCID: PMC8262765 DOI: 10.1007/s12274-021-3595-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/19/2023]
Abstract
Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.
Collapse
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Du
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433 China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
35
|
Tian Y, Vankova N, Weidler P, Kuc A, Heine T, Wöll C, Gu Z, Zhang J. Oriented Growth of In-Oxo Chain Based Metal-Porphyrin Framework Thin Film for High-Sensitive Photodetector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100548. [PMID: 34306983 PMCID: PMC8292912 DOI: 10.1002/advs.202100548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Indexed: 06/13/2023]
Abstract
The potential of metal-organic frameworks (MOFs) for applications in optoelectronics results from a unique combination of interesting photophysical properties and straightforward tunability of organic and inorganic units. Here, it is demonstrated that using MOF approach chromophores can be assembled into well-ordered 1D arrays using metal-oxo strands as lead structure, and the resulting porphyrinic rows exhibit unique photophysical properties and allow the realization of highly sensitive photodetectors. A porphyrinic MOF thin film, In-TCPP surface-coordinated MOF thin films with [021] orientation is fabricated using a layer-by-layer method, from In(NO3)3 and TCPP (5,10,15,20-(4-carboxyphenyl)porphyrin). Detailed experimental and theoretical analysis reveals that the assembly yields a structure where In-oxo strands running parallel to the substrate fix the chromophoric linkers to yield 1D arrays of porphyrins. The frontier orbitals of this highly anisotropic arrangement are localized in these columnar arrangements of porphyrins and result in high photoactivity, which is exploited to fabricate a photodetector with record (as compared to other organic materials) responsivity in visible regime of 7.28 × 1014 Jones and short rise/fall times (0.07/0.04 s). This oriented MOF thin film-based high-sensitive photodetector provides a new avenue to use inorganic, stable lead structures to assemble organic semiconductors into regular arrays, thus creating a huge potential for the fabrication of optoelectronic devices.
Collapse
Affiliation(s)
- Yi‐Bo Tian
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Nina Vankova
- Faculty of Chemistry and Food ChemistryTechnical University DresdenDresden01069Germany
| | - Peter Weidler
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Eggenstein‐Leopoldshafen76344Germany
| | - Agnieszka Kuc
- Institute of Resource EcologyHelmholtz‐Center Dresden‐RossendorfLeipzig Research BranchLeipzig04318Germany
| | - Thomas Heine
- Faculty of Chemistry and Food ChemistryTechnical University DresdenDresden01069Germany
- Institute of Resource EcologyHelmholtz‐Center Dresden‐RossendorfLeipzig Research BranchLeipzig04318Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Eggenstein‐Leopoldshafen76344Germany
| | - Zhi‐Gang Gu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
36
|
|
37
|
Rabiee N, Bagherzadeh M, Heidarian Haris M, Ghadiri AM, Matloubi Moghaddam F, Fatahi Y, Dinarvand R, Jarahiyan A, Ahmadi S, Shokouhimehr M. Polymer-Coated NH 2-UiO-66 for the Codelivery of DOX/pCRISPR. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10796-10811. [PMID: 33621063 DOI: 10.1021/acsami.1c01460] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, the NH2-UiO-66 metal organic framework (MOF) has been green synthesized with the assistance of high gravity to provide a suitable and safe platform for drug loading. The NH2-UiO-66 MOF was characterized using a field-emission scanning electron microscope, transmission electron microscope (TEM), X-ray diffraction, and zeta potential analysis. Doxorubicin was then encapsulated physically on the porosity of the green MOF. Two different stimulus polymers, p(HEMA) and p(NIPAM), were used as the coating agents of the MOFs. Doxorubicin was loaded onto the polymer-coated MOFs as well, and a drug payload of more than 51% was obtained, which is a record by itself. In the next step, pCRISPR was successfully tagged on the surface of the modified MOFs, and the performance of the final nanosystems were evaluated by the GFP expression. In addition, successful loadings and internalizations of doxorubicin were investigated via confocal laser scanning microscopy. Cellular images from the HeLa cell line for the UiO-66@DOX@pCRISPR and GMA-UiO-66@DOX@pCRISPR do not show any promising and successful gene transfections, with a maximum EGFP of 1.6%; however, the results for the p(HEMA)-GMA-UiO-66@DOX@pCRISPR show up to 4.3% transfection efficiency. Also, the results for the p(NIPAM)-GMA-UiO-66@DOX@pCRISPR showed up to 6.4% transfection efficiency, which is the first and superior report of a MOF-based nanocarrier for the delivery of pCRISPR. Furthermore, the MTT assay does not shown any critical cytotoxicity, which is a promising result for further biomedical applications. At the end of the study, the morphologies of all of the nanomaterials were screened after drug and gene delivery procedures and showed partial degradation of the nanomaterial. However, the cubic structure of the MOFs has been shown in TEM, and this is further proof of the stability of these green MOFs for biomedical applications.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Atefeh Jarahiyan
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Yang J, Wang H, Liu J, Ding M, Xie X, Yang X, Peng Y, Zhou S, Ouyang R, Miao Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv 2021; 11:3241-3263. [PMID: 35424280 PMCID: PMC8694185 DOI: 10.1039/d0ra09878g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metal organic-frameworks (MOFs) are novel materials that have attracted increasing attention for applications in a wide range of research, owing to their unique advantages including their small particle size, porous framework structure and high specific surface area. Because of their adjustable size, nanoscale MOFs (nano-MOFs) can be prepared as carriers of biotherapy drugs, thus enabling biotherapeutic applications. Nano-MOFs' metal ion catalytic activity and organic group functional characteristics can be exploited in biological treatments. Furthermore, the applications of nano-MOFs can be broadened by hybridization with other materials to form composites. This review focuses on the preparation and recent advances in nano-MOFs as drug carriers, therapeutic materials and functionalized materials in drug delivery and tumor therapy based on the single/multiple stimulus response of drug release to achieve the targeted therapy, offering a comprehensive reference for drug carrier design. At the end, the current challenges and prospects are discussed to provide significant insight into the design and applications of nano-MOFs in drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yaru Peng
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine Shanghai 200092 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
39
|
Chen Q, Zhou L, Jiang W, Fan G. Oxygenated functional group-engaged electroless deposition of ligand-free silver nanoparticles on porous carbon for efficient electrochemical non-enzymatic H 2O 2 detection. NANOSCALE 2020; 12:24495-24502. [PMID: 33320149 DOI: 10.1039/d0nr07341e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of metal-carbon nanostructures with enhanced performances using traditional methods, such as pyrolysis, photolysis, impregnation-reduction, etc., generally requires additional energy input, reducing agents and capping ligands, which inevitably increase the manufacturing cost and environmental pollution. Herein, a novel one-step substrate-induced electroless deposition (SIED) strategy is developed to synthesize ligand-free Ag NPs supported on porous carbon (PC) (Ag/PC). The PC matrix enriched with oxygenated functional groups has a low work function and thus a low redox potential compared to that of Ag+ ions, which induces the auto-reduction of Ag+ ions to Ag NPs. The as-synthesized Ag/PC-6 modified electrode can be used as an excellent nonenzymatic H2O2 sensor with a broad linear range of 0.001-20 mM, a low detection limit of 0.729 μM (S/N = 3), and a high response sensitivity of 226.9 μA mM-1 cm-2, outperforming most of the reported sensor materials. Moreover, this electrode can be applied to detect trace amounts of H2O2 in juice and milk samples below the permitted residual level in food packaging and the recovery of H2O2 is 99.6% in blood serum (10%) with good reproducibility. This study proposes an efficient approach for synthesizing a highly active supported Ag electrocatalyst, which shows significant potential for practical applications.
Collapse
Affiliation(s)
- Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | |
Collapse
|
40
|
Yang J, Wang Y, Pan M, Xie X, Liu K, Hong L, Wang S. Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods 2020; 9:E1610. [PMID: 33172006 PMCID: PMC7694616 DOI: 10.3390/foods9111610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability. Combined with solid phase extraction (SPE) technique, MMOF materials have been widely used in the food pretreatment. This article introduced the new preparation strategies of different MMOF materials, systematically summarizes their applications as SPE adsorbents in the pretreatment of food contaminants and analyzes and prospects their future application prospects and development directions.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yabin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
41
|
Wang W, Song MS, Yang XN, Zhao J, Cole IS, Chen XB, Fan Y. Synergistic Coating Strategy Combining Photodynamic Therapy and Fluoride-Free Superhydrophobicity for Eradicating Bacterial Adhesion and Reinforcing Corrosion Protection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46862-46873. [PMID: 32960039 DOI: 10.1021/acsami.0c10584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Device-associated infection is one of the significant challenges in the biomedical industry and clinical management. Controlling the initial attachment of microbes upon the solid surface of biomedical devices is a sound strategy to minimize the formation of biofilms and infection. A synergistic coating strategy combining superhydrophobicity and bactericidal photodynamic therapy is proposed herein to tackle infection issues for biomedical materials. A multifunctional coating is produced upon pure Mg substrate through a simple blending procedure without involvement of any fluoride-containing agents, differing from the common superhydrophobic surface preparations. Superhydrophobic features of the coating are confirmed through water contact angle measurements (152.5 ± 1.9°). In vitro experiments reveal that bacterial-adhesion repellency regarding both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains approaches over 96%, which is evidently ascribed to the proposed synergistic strategy, that is, superhydrophobic nature and microbicidal ability of photodynamic therapy. Electrochemical analysis indicates that the superhydrophobic coating provides pronounced protection against corrosion to underlying Mg with 80% reduction in the corrosion rate in minimum essential medium and retains the original surface features after 168 h exposure to neutral salt spray. The proof-of-concept research holds a great promise for tackling the notorious bacterial infection and poor corrosion resistance of Mg-based biodegradable materials in a simple, efficient, and environmentally benign manner.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ming-Shi Song
- School of Engineering, RMIT University, Carlton 3053, Victoria, Australia
| | - Xiao-Na Yang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Ivan S Cole
- School of Engineering, RMIT University, Carlton 3053, Victoria, Australia
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton 3053, Victoria, Australia
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
42
|
Fabrication of a new heterogeneous tungstate-based on the amino-functionalized metal-organic framework as an efficient catalyst towards sonochemical oxidation of alcohols under green condition. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Rahmati Z, Abdi J, Vossoughi M, Alemzadeh I. Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity. ENVIRONMENTAL RESEARCH 2020; 188:109555. [PMID: 32559687 DOI: 10.1016/j.envres.2020.109555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, numerous attempts have been made to prevent microbial pollution spreading, using antibacterial agents. Zeolitic imidazolate framework-8 (ZIF-8) belongs to a subgroup of metal organic frameworks (MOFs) merits of attention due to the zinc ion clusters and its effective antibacterial activity. In this work, Ag-doped magnetic microporous γ-Fe2O3@SiO2@ZIF-8-Ag (FSZ-Ag) was successfully synthesized by a facile methodology in room temperature and used as an antibacterial agent against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Several characterization methods were applied to analyze the properties of the materials, and the results confirmed the accuracy of the synthesis procedure. Silver ions have employed to enhance the efficiency of antibacterial activity. As the results illustrated, FSZ-Ag nanostructured material had superior performance to inactive E. coli and S. aureus in growth inhibition test in liquid media. The best antibacterial activity as minimum inhibitory concentration (MIC) was 100 mg/L of FSZ-Ag against both bacteria. Leaching rates of silver ions showed that 80% of Ag released in the solutions, which was responsible for inhibiting the growth of bacteria. Also, fluorescence microscopy was used to investigate bacterial viability after 20 h contacting FSZ-Ag to distinguish live and dead bacteria by staining with DAPI and PI fluorescence stains. This novel magnetic nanostructured material is an excellent promising candidate to use in biological applications as high potential bactericidal materials.
Collapse
Affiliation(s)
- Ziba Rahmati
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| | - Jafar Abdi
- Faculty of Chemical and Material Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran.
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
44
|
Jiang Z, Wang T, Yuan S, Wang M, Qi W, Su R, He Z. A tumor-sensitive biological metal-organic complex for drug delivery and cancer therapy. J Mater Chem B 2020; 8:7189-7196. [PMID: 32618980 DOI: 10.1039/d0tb00599a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic complexes (MOCs) or metal-organic frameworks (MOFs) have attracted increasing interest for constructing nanoscale drug delivery systems for cancer therapy. However, conventional MOC/MOF materials usually contain toxic metals or low-biocompatible organic ligands. Also, current approaches for creating tumor-sensitive nanocarriers are always based on the instability of coordination bonds under acidic conditions, or through post-synthetic modification with sensitive molecules. As a matter of fact, it is more facile to fabricate tumor-sensitive MOCs/MOFs based on the stimuli-responsiveness of organic ligands. In this study, a novel tumor-sensitive biological MOC (bioMOC-Zn(Cys)) was created through the assembly of endogenous Zn2+ ions and the small biological molecule (l-cystine, Cys). The disulfide bond in l-cystine is cleavable by the overexpressed GSH in tumor cells, thus achieving rapid release of drugs from nanocarriers. By encapsulating doxorubicin (DOX) in bioMOC-Zn(Cys), DOX@bioMOC-Zn(Cys) displayed higher cellular uptake and cytotoxicity in cancer cells than free DOX. In vivo investigations indicated that DOX@bioMOC-Zn(Cys) largely inhibited tumor growth and reduced side effects. Remarkably, since both metal ions and organic ligands were obtained from biological sources, bioMOC-Zn(Cys) exhibited superior biocompatibility. This study presents a new method for fabricating MOC-based nanodrugs with high tumor-sensitivity and low toxicity.
Collapse
Affiliation(s)
- Zelei Jiang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Tong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Shuai Yuan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
45
|
Parra-Nieto J, Del Cid MAG, de Cárcer IA, Baeza A. Inorganic Porous Nanoparticles for Drug Delivery in Antitumoral Therapy. Biotechnol J 2020; 16:e2000150. [PMID: 32476279 DOI: 10.1002/biot.202000150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Indexed: 12/26/2022]
Abstract
The use of nanoparticles in oncology to deliver chemotherapeutic agents has received considerable attention in the last decades due to their tendency to be passively accumulated in solid tumors. Besides this remarkable property, the surface of these nanocarriers can be decorated with targeting moieties capable to recognize malignant cells which lead to selective nanoparticle uptake mainly in the diseased cells, without affecting the healthy ones. Among the different nanocarriers which have been developed with this purpose, inorganic porous nanomaterials constitute some of the most interesting due to their unique properties such as excellent cargo capacity, high biocompatibility and chemical, thermal and mechanical robustness, among others. Additionally, these materials can be engineered to present an exquisite control in the drug release behavior placing stimuli-responsive pore-blockers or sensitive hybrid coats on their surface. Herein, the recent advances developed in the use of porous inorganic nanomedicines will be described in order to provide an overview of their huge potential in the look out of an efficient and safe therapy against this complex disease. Porous inorganic nanoparticles have been designed to be accumulated in tumoral tissues; once there to recognize the target cell and finally, to release their payload in a controlled manner.
Collapse
Affiliation(s)
- Jorge Parra-Nieto
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - María Amor García Del Cid
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Iñigo Aguirre de Cárcer
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Alejandro Baeza
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
46
|
Wang J, Xu H, Ao C, Pan X, Luo X, Wei S, Li Z, Zhang L, Xu ZL, Li Y. Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene. iScience 2020; 23:101233. [PMID: 32629604 PMCID: PMC7322249 DOI: 10.1016/j.isci.2020.101233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
Designing nanocatalysts with synergetic functional component is a desirable strategy to achieve both high activity and selectivity for industrially important hydrogenation reaction. Herein, we fabricated a core-shell hollow Au@Pt NTs@ZIFs (ZIF, zeolitic imidazolate framework; NT, nanotube) nanocomposite as highly efficient catalysts for semi-hydrogenation of acetylene. Hollow Au@Pt NTs were synthesized by epitaxial growth of Pt shell on Au nanorods followed with oxidative etching of Au@Pt nanorod. The obtained hollow Au@Pt NTs were then homogeneously encapsulated within ZIFs through in situ crystallization. By combining the high activity of bimetallic nanotube and gas enrichment property of porous metal-organic frameworks, hollow Au@Pt NT@ZIF catalyst was demonstrated to show superior catalytic performance for the semi-hydrogenation of acetylene, in terms of both selectivity and activity, over those of monometallic Au and solid bimetal nanorod@ZIF counterparts. This catalysts design idea is believed to be inspirable for the development of highly efficient nanocomposite catalysts. Core-shell nanocomposite catalysts M@ZIFs are assembled The M NRs and NTs are well dispersed and fully encapsulated in ZIF-67 and ZIF-8 Au@PtNT enhance the selectivity and conversion for the semi-hydrogenation of acetylene DFT calculations show Au@PtNT has lower energy barrier compared with Au@PtNR
Collapse
Affiliation(s)
- Jiajia Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chengcheng Ao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xinbo Pan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xikuo Luo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - ShengJie Wei
- Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Zhen-Liang Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
47
|
|
48
|
Osterrieth JWM, Fairen-Jimenez D. Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol J 2020; 16:e2000005. [PMID: 32330358 DOI: 10.1002/biot.202000005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Indexed: 12/23/2022]
Abstract
Among a plethora of nano-sized therapeutics, metal-organic frameworks (MOFs) have been some of the most investigated novel materials for, predominantly, cancer drug delivery applications. Due to their large drug uptake capacities and slow-release mechanisms, MOFs are desirable drug delivery vehicles that protect and transport sensitive drug molecules to target sites. The inclusion of other guest materials into MOFs to make MOF-composite materials has added further functionality, from externally triggered drug release to improved pharmacokinetics and diagnostic aids. MOF-composites are synthetically versatile and can include examples such as magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that improve the blood-circulation time. From synthesis to applications, this review will consider the main developments in MOF-composite chemistry for biomedical applications and demonstrate the potential of these novel agents in nanomedicine. It is concluded that, although vast synthetic progress has been made in the field, it requires now to develop more biomedical expertise with a focus on rational model selection, a major comparative toxicity study, and advanced targeting techniques.
Collapse
Affiliation(s)
- Johannes W M Osterrieth
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
49
|
Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213212] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Recent advances and applications of magnetic nanomaterials in environmental sample analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115864] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|