1
|
Ko K, Yoo H, Han S, Chang WS, Kim D. Surface-enhanced Raman spectroscopy with single cell manipulation by microfluidic dielectrophoresis. Analyst 2024. [PMID: 39469842 DOI: 10.1039/d4an00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
When exposed to an alternating current (AC) electric field, a polarized microparticle is moved by the interaction between the voltage-induced dipoles and the AC electric field under dielectrophoresis (DEP). The DEP force is widely used for manipulation of microparticles in diverse practical applications such as 3D manipulation, sorting, transfer, and separation of various particles such as living cells. In this study, we propose the integration of surface-enhanced Raman spectroscopy (SERS), an extremely sensitive and versatile technique based on the Raman scattering of molecules supported by nanostructured materials, with DEP using a microfluidic device. The microfluidic device combines microelectrodes with gold nanohole arrays to characterize the electrophysiological and biochemical properties of biological cells. The movement of particles, which varies depending on the electrical properties such as conductivity and permittivity of particles, can be manipulated by the cross-frequency change. For proof of concept, Raman spectroscopy using the DEP-SERS integration was performed for polystyrene beads and biological cells and resulted in an improved signal-to-noise ratio by determining the direction of the DEP force applied to the cells with respect to the applied AC power and collecting them on the nanohole arrays. The result illustrates the potential of the concept for simultaneously examining the electrical and biochemical properties of diverse chemical and biological microparticles in the microfluidic environment.
Collapse
Affiliation(s)
- Kwanhwi Ko
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Hajun Yoo
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Sangheon Han
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won Seok Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Donghyun Kim
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
2
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
3
|
Poonia M, Morder CJ, Schorr HC, Schultz ZD. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:411-432. [PMID: 38382105 PMCID: PMC11254575 DOI: 10.1146/annurev-anchem-061522-035207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
4
|
Wang C, Weng G, Li J, Zhu J, Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal Chim Acta 2024; 1296:342291. [PMID: 38401925 DOI: 10.1016/j.aca.2024.342291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Microfluidic systems have attracted considerable attention due to their low reagent consumption, short analysis time, and ease of integration in comparison to conventional methods, but still suffer from shortcomings in sensitivity and selectivity. Surface enhanced Raman scattering (SERS) offers several advantages in the detection of compounds, including label-free detection at the single-molecule level, and the narrow Raman peak width for multiplexing. Combining microfluidics with SERS is a viable way to improve their detection sensitivity. Researchers have recently developed several SERS coupled microfluidic platforms with substantial potential for biomolecular detection, cellular and bacterial analysis, and hazardous substance detection. We review the current development of SERS coupled microfluidic platforms, illustrate their detection principles and construction, and summarize the latest applications in biology, environmental protection and food safety. In addition, we innovatively summarize the current status of SERS coupled multi-mode microfluidic platforms with other detection technologies. Finally, we discuss the challenges and countermeasures during the development of SERS coupled microfluidic platforms, as well as predict the future development trend of SERS coupled microfluidic platforms.
Collapse
Affiliation(s)
- Chenyang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
5
|
Wang KH, Chen YY, Wang CH, Hsu KF, Chau LK, Wang SC, Chen YL. Ultrasensitive amplification-free detection of circulating miRNA via droplet-based processing of SERS tag-miRNA-magnetic nanoparticle sandwich nanocomplexes on a paper-based electrowetting-on-dielectric platform. Analyst 2024; 149:1981-1987. [PMID: 38226658 DOI: 10.1039/d3an01429k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a promising class of biomarkers for early detection of various cancers, including ovarian cancer. However, quantifying miRNAs in human blood samples is challenging owing to the issues of sensitivity and specificity. In this study, hsa-miR-200a-3p of the miR-200a sub-family, which is a biomarker of ovarian cancer, was used as the analyte to demonstrate the analytical capability of an integrated biosensing platform using an extremely sensitive surface-enhanced Raman scattering (SERS) nanotag-nanoaggregate-embedded beads (NAEBs), magnetic nanoparticles (MNPs), a pair of highly specific locked nucleic acid (LNA) probes, and a semi-automated paper-based electrowetting-on-dielectric (pEWOD) device to provide labor-less and thorough sample cleanup and recovery. A sandwich approach where NAEBs are modified by one LNA-1 probe and MNPs are modified by another LNA-2 probe was applied. Then, the target analyte miRNA-200a-3p was introduced to form a sandwich nanocomplex through hybridization with the pair of LNA probes. The pEWOD device was used to achieve short cleanup time and good recovery of the nanocomplex, bringing the total analysis time to less than 30 min. The detection limit of this approach can reach 0.26 fM through SERS detection. The versatility of this method without the need for RNA extraction from clinical samples is expected to have good potential in detecting other miRNAs.
Collapse
Affiliation(s)
- Kai-Hao Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Yuan-Yu Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Chih-Hsien Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 70101, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
6
|
Wu S, Yuan J, Xu A, Wang L, Li Y, Lin J, Yue X, Xi X. A Lab-on-a-Tube Biosensor Combining Recombinase-Aided Amplification and CRISPR-Cas12a with Rotated Magnetic Extraction for Salmonella Detection. MICROMACHINES 2023; 14:830. [PMID: 37421063 DOI: 10.3390/mi14040830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Foodborne pathogenic bacteria threaten worldwide public health, and simple bacterial detection methods are in urgent need. Here, we established a lab-on-a-tube biosensor for simple, rapid, sensitive, and specific detection of foodborne bacteria. METHODS A rotatable Halbach cylinder magnet and an iron wire netting with magnetic silica beads (MSBs) were used for simple and effective extraction and purification of DNA from the target bacteria, and recombinase-aided amplification (RAA) was combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins12a(CRISPR-Cas12a) to amplify DNA and generate fluorescent signal. First, 15 mL of the bacterial sample was centrifuged, and the bacterial pellet was lysed by protease to release target DNA. Then, DNA-MSB complexes were formed as the tube was intermittently rotated and distributed uniformly onto the iron wire netting inside the Halbach cylinder magnet. Finally, the purified DNA was amplified using RAA and quantitatively detected by the CRISPR-Cas12a assay. RESULTS This biosensor could quantitatively detect Salmonella in spiked milk samples in 75 min, with a lower detection limit of 6 CFU/mL. The fluorescent signal of 102 CFU/mL Salmonella Typhimurium was over 2000 RFU, while 104 CFU/mL Listeria monocytogenes, Bacillus cereus, and E. coli O157:H7 were selected as non-target bacteria and had signals less than 500 RFU (same as the negative control). CONCLUSIONS This lab-on-a-tube biosensor integrates cell lysis, DNA extraction, and RAA amplification in one 15 mL tube to simplify the operation and avoid contamination, making it suitable for low-concentration Salmonella detection.
Collapse
Affiliation(s)
- Shangyi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Ai Xu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinge Xi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Han JY, Yeh M, DeVoe DL. Nanogap traps for passive bacteria concentration and single-point confocal Raman spectroscopy. BIOMICROFLUIDICS 2023; 17:024101. [PMID: 36896354 PMCID: PMC9991444 DOI: 10.1063/5.0142118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
A microfluidic device enabling the isolation and concentration of bacteria for analysis by confocal Raman spectroscopy is presented. The glass-on-silicon device employs a tapered chamber surrounded by a 500 nm gap that serves to concentrate cells at the chamber apex during sample perfusion. The sub-micrometer gap retains bacteria by size exclusion while allowing smaller contaminants to pass unimpeded. Concentrating bacteria within the fixed volume enables the use of single-point confocal Raman detection for the rapid acquisition of spectral signatures for bacteria identification. The technology is evaluated for the analysis of E. cloacae, K. pneumoniae, and C. diphtheriae, with automated peak extraction yielding distinct spectral fingerprints for each pathogen at a concentration of 103 CFU/ml that compare favorably with spectra obtained from significantly higher concentration reference samples evaluated by conventional confocal Raman analysis. The nanogap technology offers a simple, robust, and passive approach to concentrating bacteria from dilute samples into well-defined optical detection volumes, enabling rapid and sensitive confocal Raman detection for label-free identification of focused cells.
Collapse
Affiliation(s)
| | - Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
8
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
9
|
Zavatski S, Bandarenka H, Martin OJF. Protein Dielectrophoresis with Gradient Array of Conductive Electrodes Sheds New Light on Empirical Theory. Anal Chem 2023; 95:2958-2966. [PMID: 36692365 PMCID: PMC9909730 DOI: 10.1021/acs.analchem.2c04708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development of appropriate theoretical models and their comprehensive experimental verification. Here, we construct an original DEP platform and test the Hölzel-Pethig empirical model for protein DEP. Three different proteins are studied: lysozyme, BSA, and lactoferrin. Their molecular Clausius-Mossotti function is obtained by detecting their trapping event via the measurement of the fluorescence intensity to identify the minimum electric field gradient required to overcome dispersive forces. We observe a significant discrepancy with published theoretical data and, after a very careful analysis to rule out experimental errors, conclude that more sophisticated theoretical models are required for the response of molecular entities in DEP fields. The developed experimental platform, which includes arrays of sawtooth metal electrode pairs with varying gaps and produces variations of the electric field gradient, provides a versatile tool that can broaden the utilization of DEP for molecular entities.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Nanophotonics
and Metrology Laboratory (NAM), Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne1015, Switzerland,,
| | - Hanna Bandarenka
- The
Polytechnic School, Arizona State University, Mesa, Arizona85212, United States
| | - Olivier J. F. Martin
- Nanophotonics
and Metrology Laboratory (NAM), Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne1015, Switzerland,
| |
Collapse
|
10
|
Asgari S, Dhital R, Mustapha A, Lin M. Duplex detection of foodborne pathogens using a SERS optofluidic sensor coupled with immunoassay. Int J Food Microbiol 2022; 383:109947. [PMID: 36191492 DOI: 10.1016/j.ijfoodmicro.2022.109947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Herein, we developed a surface-enhanced Raman spectroscopy (SERS) optofluidic sensor coupled with immunoprobes to simultaneously separate and detect the foodborne pathogens, Escherichia coli O157:H7, and Salmonella in lettuce and packed salad. The method consists of three steps of (i) enrichment to enhance detection sensitivity, (ii) selective separation and labelling of target bacteria by their specific antibody-bearing SERS-nanotags and (iii) detection of tagged bacterial cells using SERS within a hydrodynamic flow-focusing SERS optofluidic device, where even low counts of bacterial cells were detectable in the very thin-film-like sample stream. SERS-nanotags consisted of different Raman reporter molecules, representing each species, i.e., the detection of Raman reporter confirms the presence of the target pathogen. The anti-E. coli antibody used in this study functions against all strains of E. coli O157:H7 and the anti-Salmonella antibody used in this work acts on a wide range of Salmonella enterica strains. Bacterial counts of 1000, 100, and 10 CFU/ 200 g sample were successfully detected after only 15 min enrichment. Our method showed a very low detection limit value of 10 CFU/ 200 g sample for the bacterial mixture in both lettuce and packed salad, proving the efficiency and high sensitivity of our method to detect multiple pathogens in the food samples. The total analysis time, including sample preparation for simultaneous detection of multiple bacteria, was estimated to be 2 h, which is much less than the time required in conventional methods. Hence, our proposed protocol is considered a promising rapid and efficient approach for pathogen screening of food samples.
Collapse
Affiliation(s)
- Sara Asgari
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rajiv Dhital
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Dogan Ü, Sucularlı F, Yildirim E, Cetin D, Suludere Z, Boyaci IH, Tamer U. Escherichia coli Enumeration in a Capillary-Driven Microfluidic Chip with SERS. BIOSENSORS 2022; 12:765. [PMID: 36140150 PMCID: PMC9497094 DOI: 10.3390/bios12090765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Pathogen detection is still a challenging issue for public health, especially in food products. A selective preconcentration step is also necessary if the target pathogen concentration is very low or if the sample volume is limited in the analysis. Plate counting (24-48 h) methods should be replaced by novel biosensor systems as an alternative reliable pathogen detection technique. The usage of a capillary-driven microfluidic chip is an alternative method for pathogen detection, with the combination of surface-enhanced Raman scattering (SERS) measurements. Here, we constructed microchambers with capillary microchannels to provide nanoparticle-pathogen transportation from one chamber to the other. Escherichia coli (E. coli) was selected as a model pathogen and specific antibody-modified magnetic nanoparticles (MNPs) as a capture probe in a complex milk matrix. MNPs that captured E. coli were transferred in a capillary-driven microfluidic chip consisting of four chambers, and 4-aminothiophenol (4-ATP)-labelled gold nanorods (Au NRs) were used as the Raman probe in the capillary-driven microfluidic chip. The MNPs provided immunomagnetic (IMS) separation and preconcentration of analytes from the sample matrix and then, 4-ATP-labelled Au NRs provided an SERS response by forming sandwich immunoassay structures in the last chamber of the capillary-driven microfluidic chip. The developed SERS-based method could detect 101-107 cfu/mL of E. coli with the total analysis time of less than 60 min. Selectivity of the developed method was also tested by using Salmonella enteritidis (S. enteritidis) and Staphylococcus aureus (S. aureus) as analytes, and very weak signals were observed.
Collapse
Affiliation(s)
- Üzeyir Dogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Düzce University, 81620 Düzce, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Türkiye
| | - Ferah Sucularlı
- Aselsan A.Ş., Radar, Electronic Warfare Systems Business Sector, 06172 Ankara, Türkiye
| | - Ender Yildirim
- Department of Mechanical Engineering, Faculty of Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Türkiye
| | - Demet Cetin
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, Besevler, 06500 Ankara, Türkiye
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Besevler, 06500 Ankara, Türkiye
| | - Ismail Hakkı Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06800 Ankara, Türkiye
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Türkiye
| |
Collapse
|
12
|
Poonia M, Küster T, Bothun GD. Organic Anion Detection with Functionalized SERS Substrates via Coupled Electrokinetic Preconcentration, Analyte Capture, and Charge Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23964-23972. [PMID: 35522999 DOI: 10.1021/acsami.2c02934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detecting ultralow concentrations of anionic analytes in solution by surface-enhanced Raman spectroscopy (SERS) remains challenging due to their low affinity for SERS substrates. Two strategies were examined to enable in situ, liquid phase detection using 5(6)-carboxyfluorescein (5(6)-FAM) as a model analyte: functionalization of a gold nanopillar substrate with cationic cysteamine self-assembled monolayer (CA-SAM) and electrokinetic preconcentration (EP-SERS) with potentials ranging from 0 to +500 mV. The CA-SAM did not enable detection without an applied field, likely due to insufficient accumulation of 5(6)-FAM on the substrate surface limited by passive diffusion. 5(6)-FAM could only be reliably detected with an applied electric field with the charged molecules driven by electroconvection to the substrate surface and the SERS intensity following the Langmuir adsorption model. The obtained limits of detection (LODs) with an applied field were 97.5 and 6.4 nM on bare and CA-SAM substrates, respectively. For the CA-SAM substrates, both the ligand and analyte displayed an ∼15-fold signal enhancement with an applied field, revealing an additional enhancement due to charge-transfer resonance taking place between the metal and 5(6)-FAM that improved the LOD by an order of magnitude.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Timo Küster
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
13
|
Dai B, Xu Y, Wang T, Wang S, Tang L, Tang J. Recent Advances in Agglomeration Detection and Dual-Function Application of Surface-Enhanced Raman Scattering (SERS). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely utilized in early detection of disease biomarkers, cell imaging, and trace contamination detection, owing to its ultra-high sensitivity. However, it is also subject to certain application restrictions in virtue of its expensive
detection equipment and long-term stability of SERS-active substrate. Recently, great progress has been made in SERS technology, represented by agglomeration method. Dual readout signal detection methods are combined with SERS, including electrochemical detection, fluorescence detection, etc.,
establishing a new fantastic viewpoint for application of SERS. In this review, we have made a comprehensive report on development of agglomeration detection and dual-function detection methods based on SERS. The synthesis methods for plasmonic materials and mainstream SERS enhancement mechanism
are also summarized. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Tao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
14
|
Das D, Hsieh HC, Chen CS, Chen WL, Chuang HS. Ultrafast and Sensitive Screening of Pathogens by Functionalized Janus Microbeads‐Enabled Rotational Diffusometry in Combination with Isothermal Amplification. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering National Cheng Kung University Tainan city 70101 Taiwan
| | - Hui-Chen Hsieh
- Department of Biochemistry and Molecular Biology National Cheng Kung University Tainan city 70101 Taiwan
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan city 70101 Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology National Cheng Kung University Tainan city 70101 Taiwan
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan city 70101 Taiwan
| | - Wei-Long Chen
- Department of Biomedical Engineering National Cheng Kung University Tainan city 70101 Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering National Cheng Kung University Tainan city 70101 Taiwan
- Medical Device Innovation Center National Cheng Kung University Tainan city 70101 Taiwan
| |
Collapse
|
15
|
Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Mikrochim Acta 2022; 189:111. [DOI: 10.1007/s00604-022-05187-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
16
|
Dietvorst J, Ferrer-Vilanova A, Iyengar SN, Russom A, Vigués N, Mas J, Vilaplana L, Marco MP, Guirado G, Muñoz-Berbel X. Bacteria Detection at a Single-Cell Level through a Cyanotype-Based Photochemical Reaction. Anal Chem 2022; 94:787-792. [PMID: 34931815 PMCID: PMC8771638 DOI: 10.1021/acs.analchem.1c03326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
The detection of living organisms at very low concentrations is necessary for the early diagnosis of bacterial infections, but it is still challenging as there is a need for signal amplification. Cell culture, nucleic acid amplification, or nanostructure-based signal enhancement are the most common amplification methods, relying on long, tedious, complex, or expensive procedures. Here, we present a cyanotype-based photochemical amplification reaction enabling the detection of low bacterial concentrations up to a single-cell level. Photocatalysis is induced with visible light and requires bacterial metabolism of iron-based compounds to produce Prussian Blue. Bacterial activity is thus detected through the formation of an observable blue precipitate within 3 h of the reaction, which corresponds to the concentration of living organisms. The short time-to-result and simplicity of the reaction are expected to strongly impact the clinical diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Jiri Dietvorst
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra (Barcelona) 08193, Spain
- Nanobiotechnology
for diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC,
CSIC), Barcelona 08034, Spain
| | - Amparo Ferrer-Vilanova
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra (Barcelona) 08193, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra
(Barcelona) 08193, Spain
| | - Sharath Narayana Iyengar
- Division
of Nanobiotechnology, Department of Protein Science, Science for life
laboratory, KTH Royal Institute of Technology, Stockholm 17165, Sweden
| | - Aman Russom
- Division
of Nanobiotechnology, Department of Protein Science, Science for life
laboratory, KTH Royal Institute of Technology, Stockholm 17165, Sweden
| | - Núria Vigués
- Departament
of Genetics and Microbiology, Universitat
Autònoma de Barcelona, Bellaterra
(Barcelona) 08193, Spain
| | - Jordi Mas
- Departament
of Genetics and Microbiology, Universitat
Autònoma de Barcelona, Bellaterra
(Barcelona) 08193, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology
for diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC,
CSIC), Barcelona 08034, Spain
- CIBER
de
Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), Barcelona 08034, Spain
| | - Maria-Pilar Marco
- Nanobiotechnology
for diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC,
CSIC), Barcelona 08034, Spain
- CIBER
de
Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), Barcelona 08034, Spain
| | - Gonzalo Guirado
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra
(Barcelona) 08193, Spain
| | - Xavier Muñoz-Berbel
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra (Barcelona) 08193, Spain
| |
Collapse
|
17
|
Alafeef M, Dighe K, Moitra P, Pan D. Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:245-258. [PMID: 35036178 PMCID: PMC8751013 DOI: 10.1021/acssuschemeng.1c06066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Indexed: 05/02/2023]
Abstract
The latest epidemic of extremely infectious coronavirus disease 2019 (COVID-19) has created a significant public health concern. Despite substantial efforts to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific location, shortcomings in the surveillance of predominantly asymptomatic infections constrain attempts to identify the epidemiological spread of the virus. Continuous surveillance of wastewater streams, including sewage, offers opportunities to track the spread of SARS-CoV-2, which is believed to be found in fecal waste. To demonstrate the feasibility of SARS-CoV-2 detection in wastewater systems, we herein present a novel facilely constructed fluorescence sensing array based on a panel of three different lanthanide-doped carbon nanoparticles (LnCNPs). The differential fluorescence response pattern due to the counterion-ligand interactions allowed us to employ powerful pattern recognition to effectively detect SARS-CoV-2 and differentiate it from other viruses or bacteria. The sensor results were benchmarked to the gold standard RT-qPCR, and the sensor showed excellent sensitivity (1.5 copies/μL) and a short sample-to-results time of 15 min. This differential response of the sensor array was also explained from the differential mode of binding of the LnCNPs with the surface proteins of the studied bacteria and viruses. Therefore, the developed sensor array provides a cost-effective, community diagnostic tool that could be potentially used as a novel epidemiologic surveillance approach to mitigate the spread of COVID-19.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Biomedical
Engineering Department, Jordan University
of Science and Technology, Irbid 22110, Jordan
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Ketan Dighe
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Parikshit Moitra
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
| | - Dipanjan Pan
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| |
Collapse
|
18
|
Hassanain WA, Johnson CL, Faulds K, Graham D, Keegan N. Recent advances in antibiotic resistance diagnosis using SERS: focus on the “ Big 5” challenges. Analyst 2022; 147:4674-4700. [DOI: 10.1039/d2an00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SERS for antibiotic resistance diagnosis.
Collapse
Affiliation(s)
- Waleed A. Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Christopher L. Johnson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| |
Collapse
|
19
|
Becker L, Janssen N, Layland SL, Mürdter TE, Nies AT, Schenke-Layland K, Marzi J. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers (Basel) 2021; 13:cancers13225682. [PMID: 34830837 PMCID: PMC8616063 DOI: 10.3390/cancers13225682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Shannon L Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
20
|
Berry ME, Kearns H, Graham D, Faulds K. Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst 2021; 146:6084-6101. [PMID: 34492668 PMCID: PMC8504440 DOI: 10.1039/d1an00865j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a technique that demonstrates a number of advantages for the rapid, specific and sensitive detection of pathogenic microorganisms. In this review, an overview of label-free and label-based SERS approaches, including microfluidics, nucleic acid detection and immunoassays, for the multiplexed detection of pathogenic bacteria and viruses from the last decade will be discussed, as well as their transition into promising point-of-use detection technologies in industrial and medical settings.
Collapse
Affiliation(s)
- Matthew E Berry
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Hayleigh Kearns
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
21
|
Pardehkhorram R, Alshawawreh F, Gonçales VR, Lee NA, Tilley RD, Gooding JJ. Functionalized Gold Nanorod Probes: A Sophisticated Design of SERS Immunoassay for Biodetection in Complex Media. Anal Chem 2021; 93:12954-12965. [PMID: 34520166 DOI: 10.1021/acs.analchem.1c02557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman scattering (SERS) probes offer considerable opportunities in label-based biosensing and analysis. However, achieving specific and reproducible performance, where low detection limits are needed in complex media, remains a challenge. Herein, we present a general strategy employing gold nanorod SERS probes and rationally designed surface chemistry involving protein resistant layers and antibodies to allow for the selective detection of species in complex media. By utilizing the ability of gold nanorods for selective surface modification, Raman reporters (4-mercaptobenzoic acid) were attached to the tips. Importantly, the sides of the nanorods were modified using a mixed layer of two different length stabilizing ligands (carboxyl-terminated oligo ethylene glycols) to ensure colloidal stability, while antibodies were attached to the stabilizing ligands. The nanoparticle interfacial design improves the colloidal stability, unlocks the capability of the probes for targeting biomolecules in complex matrices, and gives the probes the high SERS efficiency. The utility of this probe is demonstrated herein via the detection of Salmonella bacteria at the single bacterium level in complex food matrices using an anti-Salmonella IgG antibody-conjugated probe. The modular nature of the surface chemistry enables the SERS probes to be employed with a molecularly diverse range of biorecognition species (e.g., antibodies and peptides) for many different analytes, thus opening up new opportunities for efficient biosensing applications.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fida'A Alshawawreh
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - N Alice Lee
- ARC Training Centre for Advanced Technologies in Food Manufacture (ATFM), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Tai YH, Lo SC, Montagne K, Tsai PC, Liao CC, Wang SH, Chin IS, Xing D, Ho YL, Huang NT, Wei PK, Delaunay JJ. Enhancing Raman signals from bacteria using dielectrophoretic force between conductive lensed fiber and black silicon. Biosens Bioelectron 2021; 191:113463. [PMID: 34198171 DOI: 10.1016/j.bios.2021.113463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
An osmium-coated lensed fiber (OLF) probe combined with a silver-coated black silicon (SBS) substrate was used to generate a dielectrophoretic (DEP) force that traps bacteria and enables Raman signal detection from bacteria. The lensed fiber coated with a 2-nm osmium layer was used as an electrode for the DEP force and also as a lens to excite Raman signals. The black silicon coated with a 150-nm silver layer was used both as the surface-enhanced Raman scattering (SERS) substrate and the counter electrode. The enhanced Raman signal was collected by the same OLF probe and further analyzed with a spectrometer. For Raman measurements, a drop of bacterial suspension was placed between the OLF probe and the SBS substrate. By controlling the frequency of an AC voltage on the OLF probe and SBS substrate, a DEP force at 1 MHz concentrated bacteria on the SBS surface and removed the unbound micro-objects in the solution at 1 kHz. A bacteria concentration of 6 × 104 CFU/mL (colony forming units per mL) could be identified in less than 15 min, using a volume of only 1 μL, by recording the variation of the Raman peak at 740 cm-1.
Collapse
Affiliation(s)
- Yi-Hsin Tai
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shu-Cheng Lo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 10617, Taiwan
| | - Kevin Montagne
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Po-Cheng Tsai
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Chieh Liao
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Iuan-Sheau Chin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Di Xing
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Nien-Tsu Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
24
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
25
|
Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. Anal Bioanal Chem 2021; 413:2007-2020. [PMID: 33507352 DOI: 10.1007/s00216-021-03169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational method successfully applied in analytical chemistry, molecular biology and medical diagnostics. In this article, we demonstrate the combination of the negative dielectrophoretic (nDEP) phenomenon and a flexible surface-enhanced Raman platform for quick isolation (3 min), concentration and label-free identification of bacteria. The platform ensures a strong enhancement factor, high stability and reproducibility for the SERS response of analyzed samples. By introducing radial dielectrophoretic forces directed at the SERS platform, we can efficiently execute bacterial cell separation, concentration and deposition onto the SERS-active surface, which simultaneously works as a counter electrode and thus enables such hybrid DEP-SERS device vibration-based detection. Additionally, we show the ability of our DEP-SERS system to perform rapid, cultivation-free, direct detection of bacteria in urine and apple juice samples. The device provides new opportunities for the detection of pathogens.
Collapse
|
26
|
Han CH, Jang J. Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria. LAB ON A CHIP 2021; 21:184-195. [PMID: 33283832 DOI: 10.1039/d0lc00783h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrokinetic technologies such as AC electro-osmosis (EO) and dielectrophoresis (DEP) have been used for effective manipulation of bacteria to enhance the sensitivity of an assay, and many previously reported electrokinetics-enhanced biosensors are based on stagnant fluids. An effective region for positive DEP for particle capture is usually too close to the electrode for the flowing particles to move toward the detection zone of a biosensor against the flow direction; this poses a technical challenge for electrokinetics-assisted biosensors implemented within pressure-driven flows, especially if the particles flow with high speed and if the detection zone is small. Here, we present a microfluidic single-walled carbon nanotube (SWCNT)-based field-effect transistor immunosensor with electrohydrodynamic (EHD) focusing and DEP concentration for continuous and label-free detection of flowing Staphylococcus aureus in a 0.01× phosphate buffered saline (PBS) solution. The EHD focusing involved AC EO and negative DEP to align the flowing particles along lines close to the bottom surface of a microfluidic channel for facilitating particle capture downstream at the detection zone. For feasibility, 380 nm-diameter fluorescent beads suspended in 0.001× PBS were tested, and 14.6 times more beads were observed to be concentrated in the detection area with EHD focusing. Moreover, label-free, continuous, and selective measurement of S. aureus in 0.01× PBS was demonstrated, showing good linearity between the relative changes in electrical conductance of the SWCNTs and logarithmic S. aureus concentrations, a capture/detection time of 35 min, and a limit of detection of 150 CFU mL-1, as well as high specificity through electrical manipulation and biological interaction.
Collapse
Affiliation(s)
- Chang-Ho Han
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
27
|
Mohamed HI, Abd-Elsalam KA, Tmam AM, Sofy MR. Silver-based nanomaterials for plant diseases management: Today and future perspectives. SILVER NANOMATERIALS FOR AGRI-FOOD APPLICATIONS 2021:495-526. [DOI: 10.1016/b978-0-12-823528-7.00031-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
28
|
Integration of a Thermoelectric Heating Unit with Ionic Wind-Induced Droplet Centrifugation Chip to Develop Miniaturized Concentration Device for Rapid Determination of Salmonella on Food Samples Using Antibody-Functionalized SERS Tags. SENSORS 2020; 20:s20247177. [PMID: 33333831 PMCID: PMC7765269 DOI: 10.3390/s20247177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
When a centrifugation-enriched sample of 100 μL containing the surface-enhanced Raman scattering (SERS) tag-bound bacteria (Salmonella in this study) is siphoned onto a glass slide next to an embedded thermoelectric heating chip, such a sessile droplet is quickly evaporated. As the size of the sample droplet is significantly reduced during the heating process, ionic wind streams from a corona discharge needle, stationed above the sample, sweep across the liquid surface to produce centrifugal vortex flow. Tag-bound Salmonella in the sample are then dragged and trapped at the center of droplet bottom. Finally, when the sample is dried, unlike the "coffee ring" effect, the SERS tag-bound Salmonella is concentrated in one small spot to allow sensitive detection of a Raman signal. Compared with our previous electrohydrodynamic concentration device containing only a corona discharge needle, this thermoelectric evaporation-assisted device is more time-effective, with the time of concentrating and drying about 100 μL sample reduced from 2 h to 30 min. Hence, sample throughput can be accelerated with this device for practical use. It is also more sensitive, with SERS detection of a few cells of Salmonella in neat samples achievable. We also evaluated the feasibility of using this device to detect Salmonella in food samples without performing the culturing procedures. Having spiked a few Salmonella cells into ice cubes and lettuce leaves, we use filtration and ultracentrifugation steps to obtain enriched tag-bound Salmonella samples of 200 μL. After loading an aliquot of 100 μL of sample onto this concentration device, the SERS tag signals from samples of 100 g ice cubes containing two Salmonella cells and 20 g lettuce leaf containing 5 Salmonella cells can be successfully detected.
Collapse
|
29
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
30
|
Huang C, Li A, Chen X, Wang T. Understanding the Role of Metal-Organic Frameworks in Surface-Enhanced Raman Scattering Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004802. [PMID: 32985111 DOI: 10.1002/smll.202004802] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs), built from organic linkers and metal ions/clusters, have emerged as highly promising materials for wide applications. Combining highly porous crystalline MOFs with the surface-enhanced Raman scattering (SERS) technique can achieve unprecedented advantages of high selectivity, high sensitivity, and expedience in analysis and detection. In this critical review, the aim is to present a comprehensive review of recent advances in understanding of the roles of MOFs in MOF-SERS systems, particularly their structure-to-property correlation. Key examples are selected from representative literature to illustrate critical concepts and the MOF-based property-dependent applications are particularly emphasized. Finally, the barriers, future trends, and prospects for further advances in MOF-SERS platforms are also discussed.
Collapse
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Ailin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
31
|
Krafft B, Tycova A, Urban RD, Dusny C, Belder D. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. Electrophoresis 2020; 42:86-94. [PMID: 32391575 DOI: 10.1002/elps.202000048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
Collapse
Affiliation(s)
- Benjamin Krafft
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Anna Tycova
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Raphael D Urban
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
32
|
Zhu C, Zhao Q, Meng G, Wang X, Hu X, Han F, Lei Y. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. NANOTECHNOLOGY 2020; 31:205303. [PMID: 31995539 DOI: 10.1088/1361-6528/ab7100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great significance to develop a simple and effective method for constructing large-scale high-quality surface-enhanced Raman scattering (SERS) substrate. Here, an Ag nanoparticle-assembled micro-bowl array was prepared by a close-packed polystyrene (PS) sphere monolayer templated electrodeposition approach. The fabricated Ag nanoparticle-assembled micro-bowl array shows high SERS sensitivity to rhodamine 6G (R6G) under an ultra-low concentration of 1 fM, and exhibits excellent SERS spectral uniformity with a small relative standard deviation (RSD) of 7.6% and good reproducibility (a RSD ∼8.2% for the average peak intensities from different batches of SERS substrates). The fabricated micro-bowl array SERS substrate was employed to detect pesticide residue (thiram and methyl parathion) on vegetables. The limit of detections (LODs) for the two pesticides are lower than the maximum residue limits (MRLs) set by the European Union respectively, showing promising application in rapid inspection of food safety.
Collapse
Affiliation(s)
- Chuhong Zhu
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. College of Chemistry & Chemical Engineering, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu J, Hong Z, Yang W, Liu C, Lu Z, Wu L, Foda MF, Yang Z, Han H, Zhao Y. Bacteria Inspired Internal Standard SERS Substrate for Quantitative Detection. ACS APPLIED BIO MATERIALS 2020; 4:2009-2019. [DOI: 10.1021/acsabm.0c00263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zilan Hong
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Weimin Yang
- Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Chen Liu
- Leibniz Institute of Photonic Technology Jena—Member of the Research Alliance “Leibniz Health Technologies”, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Long Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Zhilin Yang
- Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
34
|
Sun J, Gong L, Wang W, Gong Z, Wang D, Fan M. Surface‐enhanced Raman spectroscopy for on‐site analysis: A review of recent developments. LUMINESCENCE 2020; 35:808-820. [DOI: 10.1002/bio.3796] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ji Sun
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Lin Gong
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Wenjun Wang
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Meikun Fan
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
- State‐province Joint Engineering Laboratory of Spatial Information Technology of High‐Speed Rail Safety Chengdu China
| |
Collapse
|
35
|
Lee KS, Wagner M, Stocker R. Raman-based sorting of microbial cells to link functions to their genes. MICROBIAL CELL 2020; 7:62-65. [PMID: 32161766 PMCID: PMC7052949 DOI: 10.15698/mic2020.03.709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In our recent work, we developed an optofluidic platform that allows a direct link to be made between the phenotypes (functions) and the genotypes (genes) of microbial cells within natural communities. By combining stable isotope probing, optical tweezers, Raman microspectroscopy, and microfluidics, the platform performs automated Raman-based sorting of taxa from within a complex community in terms of their functional properties. In comparison with manual sorting approaches, our method provides high throughput (up to 500 cells per hour) and very high sorting accuracy (98.3 ± 1.7%), and significantly reduces the human labour required. The system provides an efficient manner to untangle the contributions of individual members within environmental and host-associated microbiomes. In this News and Thoughts, we provide an overview of our platform, describe potential applications, suggest ways in which the system could be improved, and discuss future directions in which Raman-based analysis of microbial populations might be developed.
Collapse
Affiliation(s)
- Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090 Vienna, Austria.,Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Chen WY, Wang CH, Wang KH, Chen YL, Chau LK, Wang SC. Development of microfluidic concentrator using ion concentration polarization mechanism to assist trapping magnetic nanoparticle-bound miRNA to detect with Raman tags. BIOMICROFLUIDICS 2020; 14:014102. [PMID: 31933712 PMCID: PMC6941943 DOI: 10.1063/1.5126293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding single-stranded ribonucleic acid molecules. This type of endogenous oligonucleotide could be secreted into the circulation and exist stably. The detection of specific miRNAs released by cancer cells potentially provides a noninvasive means to achieve early diagnosis and prognosis of cancers. However, the typical concentration of miRNAs in blood is below the ultratrace level. This study uses a simple thermoplastic microfluidic concentration device based on an ion concentration polarization mechanism to perform enrichment and cleanup and Raman sensing beads to determine miRNA quantitatively. One sample solution containing target miRNA molecules having been hybridized with two nucleotide probes, where one probe is on a Raman tag of a nanoaggregate embedded bead (NAEB) and the other probe is on a magnetic nanoparticle (MNP), is first filled into the device. When an external field is applied across a cation exchange membrane stationed in the middle conduit of the device, the MNP-miRNA-NAEB complexed particles are enriched near the membrane edge of the cathode side. The concentrated complexed particles are further trapped using an external magnet to perform washing steps to remove excess noncomplexed NAEBs. When cleanup steps are accomplished, the remaining complexed particles are loaded into one detection capillary to acquire Raman signals from the sensing beads. Compared with that using a conventional magnetic trapping device, the cleanup time is shortened from nearly an hour to less than 10 min. Sample loss during the washing steps becomes more controllable, resulting in adequate standard curve linearity (R > 0.99) ranging from 1 to 100 pM.
Collapse
Affiliation(s)
- Wen-Yu Chen
- Department of Chemistry and Biochemistry and the Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Chih-Hsien Wang
- Department of Chemistry and Biochemistry and the Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Kai-Hao Wang
- Department of Chemistry and Biochemistry and the Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry and the Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry and the Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan
| |
Collapse
|
37
|
Ge T, Yan S, Zhang L, He H, Wang L, Li S, Yuan Y, Chen G, Huang Y. Nanowire assisted repeatable DEP-SERS detection in microfluidics. NANOTECHNOLOGY 2019; 30:475202. [PMID: 31437828 DOI: 10.1088/1361-6528/ab3dc1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) detection in microfluidics is an interesting topic for its high sensitivity, miniaturization and online detection. In this work, a SERS detection in microfluidics with the help of the Ag nanowire aggregating based on dielectrophoresis (DEP) is reported. The Raman intensities of molecule in microfluidics is greatly enhanced in the naturally generated nanogaps of Ag nanowire aggregating modulated by DEP. Firstly, the influence of DEP voltage and time on Ag nanowire aggregating is investigated to figure out the optimal condition for SERS. And then, the SERS intensities of methylene blue and rhodamine6G at various concentration with high reproducibility and uniformity are studied. Furthermore, the experiment data demonstrate this DEP-SERS system could be repeated used for different molecule detections. At last, the SERS of melamine is measured to explore its application on food safety. Our work anticipates this nanowire assisted repeatable DEP-SERS detection in microfluidics with high sensitivity could meet the emerging needs in environmental pollution monitoring, food safety evaluation, and so on.
Collapse
Affiliation(s)
- Tingting Ge
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 401331, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cui L, Zhang D, Yang K, Zhang X, Zhu YG. Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Anal Chem 2019; 91:15345-15354. [DOI: 10.1021/acs.analchem.9b03996] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - DanDan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
39
|
Hanson C, Barney JT, Bishop MM, Vargis E. Simultaneous isolation and label‐free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy. Electrophoresis 2019; 40:1446-1456. [DOI: 10.1002/elps.201800389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Cynthia Hanson
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Jacob T. Barney
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Morgan M. Bishop
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Elizabeth Vargis
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| |
Collapse
|
40
|
Roy S, Lin HY, Chou CY, Huang CH, Small J, Sadik N, Ayinon CM, Lansbury E, Cruz L, Yekula A, Jones PS, Balaj L, Carter BS. Navigating the Landscape of Tumor Extracellular Vesicle Heterogeneity. Int J Mol Sci 2019; 20:ijms20061349. [PMID: 30889795 PMCID: PMC6471355 DOI: 10.3390/ijms20061349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs) released by cells and proposed to mediate intercellular communication in physiological and pathological conditions. Considering that the genetic content of EVs reflects that of their respective parent cell, many researchers have proposed EVs as a source of biomarkers in various diseases. So far, the question of heterogeneity in given EV samples is rarely addressed at the experimental level. Because of their relatively small size, EVs are difficult to reliably isolate and detect within a given sample. Consequently, standardized protocols that have been optimized for accurate characterization of EVs are lacking despite recent advancements in the field. Continuous improvements in pre-analytical parameters permit more efficient assessment of EVs, however, methods to more objectively distinguish EVs from background, and to interpret multiple single-EV parameters are lacking. Here, we review EV heterogeneity according to their origin, mode of release, membrane composition, organelle and biochemical content, and other factors. In doing so, we also provide an overview of currently available and potentially applicable methods for single EV analysis. Finally, we examine the latest findings from experiments that have analyzed the issue at the single EV level and discuss potential implications.
Collapse
Affiliation(s)
- Sabrina Roy
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Chung-Yu Chou
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Julia Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Noah Sadik
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA.
| | - Caroline M Ayinon
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Elizabeth Lansbury
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Lilian Cruz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
42
|
A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Anal Chim Acta 2018; 1043:64-71. [DOI: 10.1016/j.aca.2018.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
43
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
44
|
Mahadevegowda SH, Hou S, Ma J, Keogh D, Zhang J, Mallick A, Liu XW, Duan H, Chan-Park MB. Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomater Sci 2018; 6:1339-1346. [PMID: 29644358 DOI: 10.1039/c8bm00139a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycan recognition plays key roles in cell-cell and host-pathogen interactions, stimulating widespread interest in developing multivalent glycoconjugates with superior binding affinity for biological and medical uses. Here, we explore the use of Raman-encoded silver coated gold nanorods (GNRs) as scaffolds to form multivalent glycoconjugates. The plasmonic scaffolds afford high-loading of glycan density and their optical properties offer the possibilities of monitoring and quantitative analysis of glycan recognition. Using E. coli strains with tailored on/off of the FimH receptors, we have demonstrated that Raman-encoded GNRs not only allow for real-time imaging and spectroscopic detection of specific binding of the glycan-GNR conjugates with bacteria of interest, but also cause rapid eradication of the bacteria due to the efficient photothermal conversion of GNRs in the near-infrared spectral window. We envision that optically active plasmonic glycoconjugates hold great potential for screening multivalent glycan ligands for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Surendra H Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jielin Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Damien Keogh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Asadulla Mallick
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
45
|
Wang K, Li S, Petersen M, Wang S, Lu X. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E762. [PMID: 30261660 PMCID: PMC6215266 DOI: 10.3390/nano8100762] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
This mini-review summarizes the most recent progress concerning the use of surface-enhanced Raman spectroscopy (SERS) for the detection and characterization of antibiotic-resistant bacteria. We first discussed the design and synthesis of various types of nanomaterials that can be used as the SERS-active substrates for biosensing trace levels of antibiotic-resistant bacteria. We then reviewed the tandem-SERS strategy of integrating a separation element/platform with SERS sensing to achieve the detection of antibiotic-resistant bacteria in the environmental, agri-food, and clinical samples. Finally, we demonstrated the application of using SERS to investigate bacterial antibiotic resistance and susceptibility as well as the working mechanism of antibiotics based on spectral fingerprinting of the whole cells.
Collapse
Affiliation(s)
- Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300371, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
46
|
|
47
|
Dies H, Nosrati R, Raveendran J, Escobedo C, Docoslis A. SERS-from-scratch: An electric field-guided nanoparticle assembly method for cleanroom-free and low-cost preparation of surface-enhanced Raman scattering substrates. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Core-shell structure of Fe3O4@MTX-LDH/Au NPs for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:422-428. [DOI: 10.1016/j.msec.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/15/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
|
49
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
50
|
Salemmilani R, Piorek BD, Mirsafavi RY, Fountain AW, Moskovits M, Meinhart CD. Dielectrophoretic Nanoparticle Aggregation for On-Demand Surface Enhanced Raman Spectroscopy Analysis. Anal Chem 2018; 90:7930-7936. [PMID: 29863841 DOI: 10.1021/acs.analchem.8b00510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rapid chemical identification of drugs of abuse in biological fluids such as saliva is of growing interest in healthcare and law enforcement. Accordingly, a label-free detection platform that accepts biological fluid samples is of great practical value. We report a microfluidics-based dielectrophoresis-induced surface enhanced Raman spectroscopy (SERS) device, which is capable of detecting physiologically relevant concentrations of methamphetamine in saliva in under 2 min. In this device, iodide-modified silver nanoparticles are trapped and released on-demand using electrodes integrated in a microfluidic channel. Principal component analysis (PCA) is used to reliably distinguish methamphetamine-positive samples from the negative control samples. Passivation of the electrodes and flow channels minimizes microchannel fouling by nanoparticles, which allows the device to be cleared and reused multiple times.
Collapse
Affiliation(s)
- Reza Salemmilani
- Department of Mechanical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Brian D Piorek
- Department of Mechanical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Rustin Y Mirsafavi
- Department of Biomolecular Science and Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Augustus W Fountain
- Research and Technology Directorate , Edgewood Chemical Biological Center , Aberdeen Proving Ground , Maryland 21010-5424 , United States
| | - Martin Moskovits
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Carl D Meinhart
- Department of Mechanical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|