1
|
Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Aguilar-Gurrieri C, Clotet B, Blanco J, Izquierdo-Useros N. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens 2021; 11:39. [PMID: 35055987 PMCID: PMC8778849 DOI: 10.3390/pathogens11010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| |
Collapse
|
2
|
Chowdhury AD, Nasrin F, Gangopadhyay R, Ganganboina AB, Takemura K, Kozaki I, Honda H, Hara T, Abe F, Park S, Suzuki T, Park EY. Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors. Biosens Bioelectron 2020; 170:112657. [PMID: 33010704 DOI: 10.1016/j.bios.2020.112657] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023]
Abstract
In this report, we have examined the distance- and size-dependent localized surface plasmon resonance (LSPR) between fluorescent quantum dots (QDs) and adjacent gold nanoparticles (AuNPs) to provide a comprehensive evaluation, aiming for practical application in biosensing platform. A series of peptides with different chain lengths, connected between QDs and AuNPs is initially applied to prepare various CdSe QDs-peptide-AuNP systems to optimize LSPR signal. Separation distance between two nanoparticles of these systems before and after conjugation is also confirmed by quantum mechanical modeling and corroborated with their LSPR influenced fluorescence variations. After detailed optimizations, it can be noted that larger sized AuNPs make strong quenching of QDs, which gradually shows enhancement of fluorescence with the increment of distance and the smaller sized AuNPs. Depending on the requirement, it is possible to tune the optimized structure of the CdSe QD-peptide-AuNP nanostructures for the application. In this work, two different structural designs with different peptide chain length are chosen to construct two biosensor systems, observing their fluorescence enhancement and quenching effects, respectively. Using different structural orientation of these biosensors, two nanoconjugates has applied for detection of norovirus and influenza virus, respectively to confirm their application in sensing.
Collapse
Affiliation(s)
- Ankan Dutta Chowdhury
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Fahmida Nasrin
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Rupali Gangopadhyay
- University of Engineering and Management, Action Area III, New Town, Kolkata 100156, India.
| | - Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kenshin Takemura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Ikko Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Toshimi Hara
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-13 Ando, Aoi-ku, Shizuoka 420-8637, Japan.
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-13 Ando, Aoi-ku, Shizuoka 420-8637, Japan.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-115 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
3
|
Perez-Zsolt D, Martinez-Picado J, Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2019; 12:v12010008. [PMID: 31861617 PMCID: PMC7019426 DOI: 10.3390/v12010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are among the first cells that recognize incoming viruses at the mucosal portals of entry. Initial interaction between DCs and viruses facilitates cell activation and migration to secondary lymphoid tissues, where these antigen presenting cells (APCs) prime specific adaptive immune responses. Some viruses, however, have evolved strategies to subvert the migratory capacity of DCs as a way to disseminate infection systemically. Here we focus on the role of Siglec-1, a sialic acid-binding type I lectin receptor potently upregulated by type I interferons on DCs, that acts as a double edge sword, containing viral replication through the induction of antiviral immunity, but also favoring viral spread within tissues. Such is the case for distant enveloped viruses like human immunodeficiency virus (HIV)-1 or Ebola virus (EBOV), which incorporate sialic acid-containing gangliosides on their viral membrane and are effectively recognized by Siglec-1. Here we review how Siglec-1 is highly induced on the surface of human DCs upon viral infection, the way this impacts different antigen presentation pathways, and how enveloped viruses have evolved to exploit these APC functions as a potent dissemination strategy in different anatomical compartments.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Chair in Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| |
Collapse
|
4
|
Perez-Zsolt D, Erkizia I, Pino M, García-Gallo M, Martin MT, Benet S, Chojnacki J, Fernández-Figueras MT, Guerrero D, Urrea V, Muñiz-Trabudua X, Kremer L, Martinez-Picado J, Izquierdo-Useros N. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat Microbiol 2019; 4:1558-1570. [PMID: 31160823 DOI: 10.1038/s41564-019-0453-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Several Ebola viruses cause outbreaks of lethal haemorrhagic fever in humans, but developing therapies tackle only Zaire Ebola virus. Dendritic cells (DCs) are targets of this infection in vivo. Here, we found that Ebola virus entry into activated DCs requires the sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169), which recognizes sialylated gangliosides anchored to viral membranes. Blockage of the Siglec-1 receptor by anti-Siglec-1 monoclonal antibodies halted Ebola viral uptake and cytoplasmic entry, offering cross-protection against other ganglioside-containing viruses such as human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Pino
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Mónica García-Gallo
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria Teresa Martin
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Benet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - María Teresa Fernández-Figueras
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirón Salud, Barcelona, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leonor Kremer
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,University of Vic-Central University of Catalonia, Vic, Spain. .,Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
5
|
TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proc Natl Acad Sci U S A 2019; 116:5705-5714. [PMID: 30842281 DOI: 10.1073/pnas.1819475116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.
Collapse
|
6
|
Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep 2018; 8:17628. [PMID: 30514891 PMCID: PMC6279787 DOI: 10.1038/s41598-018-35964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
MIL77, which has a higher manufacturing capacity than ZMapp, comprises MIL77-1, MIL77-2, and MIL77-3. The mechanisms by which these antibodies inhibit glycoprotein are unclear. Infection by viruses with lipid-bilayer envelopes occurs via the fusion of the viral membrane with the membrane of the target cell. Therefore, the interaction between the antibodies and the EBOV membrane is crucial. We examined the interactions between MIL77 and the viral membrane using SPR. MIL77-1 selectively binds to viral membranes, while MIL77-2 and MIL77-3 do not. MIL77-1’s ability to screen the more rigid domains of the membranes results in a locally increased concentration of the drug at the fusion site. Although MIL77-2 recognizes an epitope of GP, it is not necessary in the MIL77 cocktail. These results highlight the importance of EBOV membrane interactions in improving the efficiency of a neutralizing antibody. Furthermore, the viral membrane may be an important target of antibodies against EBOV.
Collapse
|
7
|
Petrescu DS, Blum AS. Viral-based nanomaterials for plasmonic and photonic materials and devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1508. [PMID: 29418076 DOI: 10.1002/wnan.1508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022]
Abstract
Over the last decade, viruses have established themselves as a powerful tool in nanotechnology. Their proteinaceous capsids benefit from biocompatibility, chemical addressability, and a variety of sizes and geometries, while their ability to encapsulate, scaffold, and self-assemble enables their use for a wide array of purposes. Moreover, the scaling up of viral-based nanotechnologies is facilitated by high capsid production yield and speed, which is particularly advantageous when compared with slower and costlier lithographic techniques. These features enable the bottom-up fabrication of photonic and plasmonic materials, which relies on the precise arrangement of photoactive material at the nanoscale to control phenomena such as electromagnetic wave propagation and energy transfer. The interdisciplinary approach required for the fabrication of such materials combines techniques from the life sciences and device engineering, thus promoting innovative research. Materials with applications spanning the fields of sensing (biological, chemical, and physical sensors), nanomedicine (cellular imaging, drug delivery, phototherapy), energy transfer and conversion (solar cells, light harvesting, photocatalysis), metamaterials (negative refraction, artificial magnetism, near-field amplification), and nanoparticle synthesis are considered with exclusive emphasis on viral capsids and protein cages. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
|
8
|
Lerch S, Reinhard BM. Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles. INTERNATIONAL JOURNAL OF MODERN PHYSICS. B 2017; 31:1740002. [PMID: 29391660 PMCID: PMC5788194 DOI: 10.1142/s0217979217400021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-assembly of functionalized nanoparticles (NPs) provides a unique class of nanomaterials for exploring and utilizing quantum-plasmonic effects that occur if the interparticle separation between NPs approaches a few nanometers and below. We review recent theoretical and experimental studies of plasmon coupling in self-assembled NP structures that contain molecular linkers between the NPs. Charge transfer through the interparticle gap of an NP dimer results in a significant blue-shift of the bonding dipolar plasmon (BDP) mode relative to classical electromagnetic predictions, and gives rise to new coupled plasmon modes, the so-called charge transfer plasmon (CTP) modes. The blue-shift of the plasmon spectrum is accompanied by a weakening of the electromagnetic field in the gap of the NPs. Due to an optical far-field signature that is sensitive to charge transfer across the gap, plasmonic molecules represent a sensor platform for detecting and characterizing gap conductivity in an optical fashion and for characterizing the role of molecules in facilitating the charge transfer across the gap.
Collapse
Affiliation(s)
- Sarah Lerch
- Department of Chemistry, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA. The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA. The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA
| |
Collapse
|
9
|
Simultaneous Analysis of Secondary Structure and Light Scattering from Circular Dichroism Titrations: Application to Vectofusin-1. Sci Rep 2016; 6:39450. [PMID: 28004740 PMCID: PMC5177910 DOI: 10.1038/srep39450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Circular Dichroism data are often decomposed into their constituent spectra to quantify the secondary structure of peptides or proteins but the estimation of the secondary structure content fails when light scattering leads to spectral distortion. If peptide-induced liposome self-association occurs, subtracting control curves cannot correct for this. We show that if the cause of the light scattering is independent from the peptide structural changes, the CD spectra can be corrected using principal component analysis (PCA). The light scattering itself is analysed and found to be in good agreement with backscattering experiments. This method therefore allows to simultaneously follow structural changes related to peptide-liposome binding as well as peptide induced liposome self-association. We apply this method to study the structural changes and liposome binding of vectofusin-1, a transduction enhancing peptide used in lentivirus based gene therapy. Vectofusin-1 binds to POPC/POPS liposomes, causing a reversal of the negative liposome charge at high peptide concentrations. When the peptide charges exactly neutralise the lipid charges on both leaflets reversible liposome self-association occurs. These results are in good agreement with biological observations and provide further insight into the conditions required for efficent transduction enhancement.
Collapse
|
10
|
Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins. mBio 2016; 7:mBio.01985-16. [PMID: 27879338 PMCID: PMC5120145 DOI: 10.1128/mbio.01985-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5.
Collapse
|
11
|
Kijewski SDG, Akiyama H, Feizpour A, Miller CM, Ramirez NGP, Reinhard BM, Gummuluru S. Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. Virology 2016; 497:328-336. [PMID: 27521724 DOI: 10.1016/j.virol.2016.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The mechanisms behind the low viral loads and lower mortality rates of HIV-2(+) individuals remain unknown. We hypothesized that reduced interaction of HIV-2 with CD169, the primary HIV-1 attachment factor on monocyte-derived dendritic cells (DCs) that targets captured virus particles to the trans infection pathway, contributes to its diminished pathogenic phenotype in vivo. We observed a significant decrease in capture of HIV-2 Gag-eGFP virus-like particles (VLPs) and infectious GFP-containing HIV-2 particles compared to corresponding HIV-1 particles by CD169(+) mature DCs. Interestingly, there was decreased co-localization of HIV-2 with HIV-1 Gag at plasma membrane microdomains in virus producer cells which correlated with reduced incorporation of GM3, the CD169 ligand, in HIV-2 virions, and reduction in mature DC-mediated HIV-2 trans infection compared to HIV-1. We conclude that limited interaction of HIV-2 with CD169 diminishes virus access to the mature DC-mediated trans infection pathway and might result in attenuated HIV-2 dissemination in vivo.
Collapse
Affiliation(s)
- Suzanne D G Kijewski
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Amin Feizpour
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Caitlin M Miller
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|