1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Hirayama K, Kitamura M, Lin NS, Nguyen MH, Le BD, Mai AT, Mayama S, Umemura K. Attachment of DNA-Wrapped Single-Walled Carbon Nanotubes (SWNTs) for a Micron-Sized Biosensor. ACS OMEGA 2022; 7:47148-47155. [PMID: 36570289 PMCID: PMC9774338 DOI: 10.1021/acsomega.2c06278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
We fabricated a micron-sized biodevice based on the near-infrared photoluminescence (PL) response of single-walled carbon nanotubes (SWNTs). Various biosensors using the unique optical responses of SWNTs have been proposed by many research groups. Most of these employed either colloidal suspensions of dispersed SWNTs or SWNT films on flat surfaces, such as electrodes. In this study, we attached DNA-wrapped SWNTs (DNA-SWNTs) to frustule (micron-sized nanoporous biosilica) surfaces, which were purified from cultured isolated diatoms. After the injection of an oxidant and a reductant, the SWNTs on the frustules showed prominent PL responses. This suggests that the biodevice functions as a micron-sized redox sensor. Frustules can be easily suspended in aqueous solutions because of their porous structures and can easily be collected as pellets by low-speed centrifugation. Thus, the removal of unbound SWNTs and the recovery of the fabricated DNA-SWNT frustules for reuse were achieved by gentle centrifugation. Our proposal for micron-sized SWNT biodevices would be helpful for various biological applications.
Collapse
Affiliation(s)
- Kota Hirayama
- Biophysics
Section, Department of Physics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku, Tokyo 162-8601, Japan
| | - Masaki Kitamura
- Biophysics
Section, Department of Physics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku, Tokyo 162-8601, Japan
| | - Nay San Lin
- Biophysics
Section, Department of Physics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku, Tokyo 162-8601, Japan
| | - Minh Hieu Nguyen
- VNU
University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Binh Duong Le
- National
Center for Technological Progress, 25 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Anh Tuan Mai
- VNU
University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi G2-206, Vietnam
| | - Shigeki Mayama
- Tokyo
Diatomology Lab, 2−3-2
Nukuikitamachi, Koganei, Tokyo 184-0015, Japan
| | - Kazuo Umemura
- Biophysics
Section, Department of Physics, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
3
|
Kim KI, Yoon S, Chang J, Lee S, Cho HH, Jeong SH, Jo K, Lee JH. Multifunctional Heterogeneous Carbon Nanotube Nanocomposites Assembled by DNA-Binding Peptide Anchors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905821. [PMID: 31898870 DOI: 10.1002/smll.201905821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Indexed: 05/25/2023]
Abstract
Although carbon nanotubes (CNTs) are remarkable materials with many exceptional characteristics, their poor chemical functionality limits their potential applications. Herein, a strategy is proposed for functionalizing CNTs, which can be achieved with any functional group (FG) without degrading their intrinsic structure by using a deoxyribonucleic acid (DNA)-binding peptide (DBP) anchor. By employing a DBP tagged with a certain FG, such as thiol, biotin, and carboxyl acid, it is possible to introduce any FG with a controlled density on DNA-wrapped CNTs. Additionally, different types of FGs can be introduced on CNTs simultaneously, using DBPs tagged with different FGs. This method can be used to prepare CNT nanocomposites containing different types of nanoparticles (NPs), such as Au NPs, magnetic NPs, and quantum dots. The CNT nanocomposites decorated with these NPs can be used as reusable catalase-like nanocomposites with exceptional catalytic activities, owing to the synergistic effects of all the components. Additionally, the unique DBP-DNA interaction allows the on-demand detachment of the NPs attached to the CNT surface; further, it facilitates a CNT chirality-specific NP attachment and separation using the sequence-specific programmable characteristics of oligonucleotides. The proposed method provides a novel chemistry platform for constructing new functional CNTs suitable for diverse applications.
Collapse
Affiliation(s)
- Kyung-Il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seokyoung Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Hui Hun Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sun Hwan Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Lambert B, Gillen AJ, Schuergers N, Wu SJ, Boghossian AA. Directed evolution of the optoelectronic properties of synthetic nanomaterials. Chem Commun (Camb) 2019; 55:3239-3242. [DOI: 10.1039/c8cc08670b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present the use of directed evolution for the engineering of the optoelectronic properties of DNA-wrapped single-walled carbon nanotubes (DNA-SWCNTs).
Collapse
Affiliation(s)
- Benjamin Lambert
- Institute of Chemical Sciences and Engineering (ISIC)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015-Lausanne
- Switzerland
| | - Alice J. Gillen
- Institute of Chemical Sciences and Engineering (ISIC)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015-Lausanne
- Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015-Lausanne
- Switzerland
| | - Shang-Jung Wu
- Institute of Chemical Sciences and Engineering (ISIC)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015-Lausanne
- Switzerland
| | - Ardemis A. Boghossian
- Institute of Chemical Sciences and Engineering (ISIC)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015-Lausanne
- Switzerland
| |
Collapse
|
5
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
6
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
7
|
Zhang D, Yang J, Li M, Li Y. (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS NANO 2016; 10:10789-10797. [PMID: 28024329 DOI: 10.1021/acsnano.6b04453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we report an accurate and convenient method that can be used to assign the chirality of all metallic single-walled carbon nanotubes (M-SWNTs). This method is designed based on the electronic Raman scattering (ERS) features, which are resonantly enhanced at the corresponding excitonic transition energies (Mii+ and Mii-). Using this method, we are able to accurately determine the electronic property Mii with the resolution of a vibrational Raman spectroscopy (∼0.3 meV), which is significantly higher than that of the electronic spectroscopies (∼3 meV). We use the Mii splitting value, which is found insensitive to environmental changes, as a universal criteria for (n,m) assignments in various environments. As an illustrative example, simply using a commercialized Raman spectrometer with two laser lines (1.959 and 2.330 eV), we are able to unambiguously assign 18 metallic chiralities with M11 in the 1.6-2.3 eV range in our samples. This method provides an accurate database of Mii's in a similar way as photoluminescence excitation spectroscopy does for Sii's. It can facilitate further systematic studies on the properties of M-SWNTs with defined chirality.
Collapse
Affiliation(s)
- Daqi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Meihui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|