1
|
Shangguan L, He LB, Dong SP, Gao YT, Sun Q, Zhu JH, Hong H, Zhu C, Yang ZX, Sun LT. Fabrication of β-Ga 2O 3 Nanotubes via Sacrificial GaSb-Nanowire Templates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2756. [PMID: 37887907 PMCID: PMC10609696 DOI: 10.3390/nano13202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
β-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they exhibit promising photoelectric properties and potential applications. Despite the extensive efforts on β-Ga2O3 nanowires, investigations into β-Ga2O3 nanotubes are rare since the tubular structures are hard to synthesize. In this paper, we report a facile method for fabricating β-Ga2O3 nanotubes using pre-synthesized GaSb nanowires as sacrificial templates. Through a two-step heating-treatment strategy, the GaSb nanowires are partially oxidized to form β-Ga2O3 shells, and then, the residual inner parts are removed subsequently in vacuum conditions, yielding delicate hollow β-Ga2O3 nanotubes. The length, diameter, and thickness of the nanotubes can be customized by using different GaSb nanowires and heating parameters. In situ transmission electron microscopic heating experiments are performed to reveal the transformation dynamics of the β-Ga2O3 nanotubes, while the Kirkendall effect and the sublimation process are found to be critical. Moreover, photoelectric tests are carried out on the obtained β-Ga2O3 nanotubes. A photoresponsivity of ~25.9 A/W and a detectivity of ~5.6 × 1011 Jones have been achieved with a single-β-Ga2O3-nanotube device under an excitation wavelength of 254 nm.
Collapse
Affiliation(s)
- Lei Shangguan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
- SEU-AMTE Collaborative Center for Atomic Layer Deposition and Etching, Southeast University, Wuxi 214000, China; (S.-P.D.); (J.-H.Z.)
| | - Long-Bing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
- SEU-AMTE Collaborative Center for Atomic Layer Deposition and Etching, Southeast University, Wuxi 214000, China; (S.-P.D.); (J.-H.Z.)
| | - Sheng-Pan Dong
- SEU-AMTE Collaborative Center for Atomic Layer Deposition and Etching, Southeast University, Wuxi 214000, China; (S.-P.D.); (J.-H.Z.)
| | - Yu-Tian Gao
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
| | - Qian Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
| | - Jiong-Hao Zhu
- SEU-AMTE Collaborative Center for Atomic Layer Deposition and Etching, Southeast University, Wuxi 214000, China; (S.-P.D.); (J.-H.Z.)
| | - Hua Hong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
| | - Zai-Xing Yang
- School of Physics, Shandong University, Jinan 250100, China;
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Li-Tao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; (L.S.); (Y.-T.G.); (Q.S.); (H.H.); (C.Z.); (L.-T.S.)
| |
Collapse
|
2
|
Bera S, Sahu P, Dutta A, Nobile C, Pradhan N, Cozzoli PD. Partial Chemicalization of Nanoscale Metals: An Intra-Material Transformative Approach for the Synthesis of Functional Colloidal Metal-Semiconductor Nanoheterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305985. [PMID: 37724799 DOI: 10.1002/adma.202305985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Heterostructuring colloidal nanocrystals into multicomponent modular constructs, where domains of distinct metal and semiconductor phases are interconnected through bonding interfaces, is a consolidated approach to advanced breeds of solution-processable hybrid nanomaterials capable of expressing richly tunable and even entirely novel physical-chemical properties and functionalities. To meet the challenges posed by the wet-chemical synthesis of metal-semiconductor nanoheterostructures and to overcome some intrinsic limitations of available protocols, innovative transformative routes, based on the paradigm of partial chemicalization, have recently been devised within the framework of the standard seeded-growth scheme. These techniques involve regiospecific replacement reactions on preformed nanocrystal substrates, thus holding great synthetic potential for programmable configurational diversification. This review article illustrates achievements so far made in the elaboration of metal-semiconductor nanoheterostructures with tailored arrangements of their component modules by means of conversion pathways that leverage on spatially controlled partial chemicalization of mono- and bi-metallic seeds. The advantages and limitations of these approaches are discussed within the context of the most plausible mechanisms underlying the evolution of the nanoheterostructures in liquid media. Representative physical-chemical properties and applications of chemicalization-derived metal-semiconductor nanoheterostructures are emphasized. Finally, prospects for developments in the field are outlined.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Puspanjali Sahu
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Anirban Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Concetta Nobile
- CNR NANOTEC - Institute of Nanotechnology, UOS di Lecce, Lecce, 73100, Italy
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - P Davide Cozzoli
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, 73100, Italy
- UdR INSTM di Lecce, c/o Università del Salento, Lecce, 73100, Italy
| |
Collapse
|
3
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
4
|
Ding J, Fu S, Zhang R, Boon E, Lee W, Fisher FT, Yang EH. Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes. NANOTECHNOLOGY 2017; 28:465302. [PMID: 29064823 DOI: 10.1088/1361-6528/aa8ba9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.
Collapse
Affiliation(s)
- Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, United States of America
| | | | | | | | | | | | | |
Collapse
|
5
|
Susman MD, Feldman Y, Bendikov TA, Vaskevich A, Rubinstein I. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles. NANOSCALE 2017; 9:12573-12589. [PMID: 28820220 DOI: 10.1039/c7nr04256f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol-1, similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu2O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.
Collapse
Affiliation(s)
- Mariano D Susman
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | | | |
Collapse
|
6
|
Muench F, Sun L, Kottakkat T, Antoni M, Schaefer S, Kunz U, Molina-Luna L, Duerrschnabel M, Kleebe HJ, Ayata S, Roth C, Ensinger W. Free-Standing Networks of Core-Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:771-781. [PMID: 27935294 DOI: 10.1021/acsami.6b13979] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanotube assemblies represent an emerging class of advanced functional materials, whose utility is however hampered by intricate production processes. In this work, three classes of nanotube networks (monometallic, bimetallic, and metal oxide) are synthesized solely using facile redox reactions and commercially available ion track membranes. First, the disordered pores of an ion track membrane are widened by chemical etching, resulting in the formation of a strongly interconnected pore network. Replicating this template structure with electroless copper plating yields a monolithic film composed of crossing metal nanotubes. We show that the parent material can be easily transformed into bimetallic or oxidic derivatives by applying a second electroless plating or thermal oxidation step. These treatments retain the monolithic network structure but result in the formation of core-shell nanotubes of altered composition (thermal oxidation: Cu2O-CuO; electroless nickel coating: Cu-Ni). The obtained nanomaterials are applied in the enzyme-free electrochemical detection of glucose, showing very high sensitivities between 2.27 and 2.83 A M-1 cm-2. Depending on the material composition, varying reactivities were observed: While copper oxidation reduces the response to glucose, it is increased in the case of nickel modification, albeit at the cost of decreased selectivity. The performance of the materials is explained by the network architecture, which combines the advantages of one-dimensional nano-objects (continuous conduction pathways, high surface area) with those of a self-supporting, open-porous superstructure (binder-free catalyst layer, efficient diffusion). In summary, this novel synthetic approach provides a fast, scalable, and flexible route toward free-standing nanotube arrays of high compositional complexity.
Collapse
Affiliation(s)
- Falk Muench
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Luwan Sun
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Tintula Kottakkat
- Department of Physical and Theoretical Chemistry, Freie Universität Berlin , Takustraße 3, 14195 Berlin, Germany
| | - Markus Antoni
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Sandra Schaefer
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Ulrike Kunz
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Michael Duerrschnabel
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Hans-Joachim Kleebe
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Sevda Ayata
- Science Faculty, Department of Chemistry, Dokuz Eylul University , Tinaztepe Kampusu, Buca, 35160 Izmir, Turkey
| | - Christina Roth
- Department of Physical and Theoretical Chemistry, Freie Universität Berlin , Takustraße 3, 14195 Berlin, Germany
| | - Wolfgang Ensinger
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|