1
|
Sun C, Xu X, Gui C, Chen F, Wang Y, Chen S, Shao M, Wang J. High-Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium-Ion Storage. NANO-MICRO LETTERS 2023; 15:202. [PMID: 37596510 PMCID: PMC10439101 DOI: 10.1007/s40820-023-01175-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
Tailoring the interfacial interaction in SiC-based anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage. In this paper, atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene (NG) on SiC (NG@SiC). This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction, making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration. Both density functional theory (DFT) analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds, enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation. As a proof-of-concept study, this well-designed NG@SiC anode shows good reversible capacity (1197.5 mAh g-1 after 200 cycles at 0.1 A g-1) and cycling durability with 76.6% capacity retention at 447.8 mAh g-1 after 1000 cycles at 10.0 A g-1. As expected, the lithium-ion full cell (LiFePO4/C//NG@SiC) shows superior rate capability and cycling stability. This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond.
Collapse
Affiliation(s)
- Changlong Sun
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Xin Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Fuzhou Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Shengzhou Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Choi JH, Kumari N, Kumar A, Acharya A, Ahn J, Kim J, Hwang H, Joo T, Kim JK, Lee IS. Stratum-Confined Solid-State Reaction (SC-SSR) toward Colloidal Silicon-Based Hollow Nanostructures for Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301190. [PMID: 37096899 DOI: 10.1002/smll.202301190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Silicon nanostructures (SiNSs) can provide multifaceted bioapplications; but preserving their subhundred nm size during high-temperature silica-to-silicon conversion is the major bottleneck. The SC-SSR utilizes an interior metal-silicide stratum space at a predetermined radial distance inside silica nanosphere to guide the magnesiothermic reduction reaction (MTR)-mediated synthesis of hollow and porous SiNSs. In depth mechanistic study explores solid-to-hollow transformation encompassing predefined radial boundary through the participation of metal-silicide species directing the in-situ formed Si-phase accumulation within the narrow stratum. Evolving thin-porous Si-shell remains well protected by the in-situ segregated MgO emerging as a protective cast against the heat-induced deformation and interparticle sintering. Retrieved hydrophilic SiNSs (<100 nm) can be conveniently processed in different biomedia as colloidal solutions and endocytosized inside cells as photoluminescence (PL)-based bioimaging probes. Inside the cell, rattle-like SiNSs encapsulated with Pd nanocrystals can function as biorthogonal nanoreactors to catalyze intracellular synthesis of probe molecules through C-C cross coupling reaction.
Collapse
Affiliation(s)
- Jeong Hun Choi
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Anubhab Acharya
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jungsoo Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyeonwoong Hwang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
3
|
Sun Z, Zhu J, Yang C, Xie Q, Jiang Y, Wang K, Jiang M. N-Type Polyoxadiazole Conductive Polymer Binders Derived High-Performance Silicon Anodes Enabled by Crosslinking Metal Cations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12946-12956. [PMID: 36862122 DOI: 10.1021/acsami.2c19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dilemma of employing high-capacity battery materials and maintaining the electrodes' electrical and mechanical integrity requires a unique binder system design. Polyoxadiazole (POD) is an n-type conductive polymer with excellent electronic and ionic conductive properties, which has acted as a silicon binder to achieve high specific capacity and rate performance. However, due to its linear structure, it cannot effectively alleviate the enormous volume change of silicon during the process of lithiation/delithiation, resulting in poor cycle stability. This paper systematically studied metal ion (i.e., Li+, Na+, Mg2+, Ca2+, and Sr2+)-crosslinked PODs as silicon anode binders. The results show that the ionic radius and valence state remarkably influence the polymer's mechanical properties and the electrolyte's infiltration. Electrochemical methods have thoroughly explored the effects of different ion crosslinks on the ionic and electronic conductivity of POD in the intrinsic and n-doped states. Attributed to the excellent mechanical strength and good elasticity, Ca-POD can better maintain the overall integrity of the electrode structure and conductive network, significantly improving the cycling stability of the silicon anode. The cell with such binders still retains a capacity of 1770.1 mA h g-1 after 100 cycles at 0.2 C, which is ∼285% that of the cell with the PAALi binder (620.6 mA h g-1). This novel strategy using metal-ion crosslinking polymer binders and the unique experimental design provides a new pathway of high-performance binders for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Zhaomei Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Jiadeng Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Smart Devices and Printed Electronics Foundry, Brewer Science Inc., Springfield, Missouri 65806, United States
| | - Chen Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Qibao Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Yan Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Kaixiang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Mengjin Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
4
|
Bi X, Tang T, Shi X, Ge X, Wu W, Zhang Z, Wang J. One-Step Synthesis of Multi-Core-Void@Shell Structured Silicon Anode for High-Performance Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200796. [PMID: 35961951 DOI: 10.1002/smll.202200796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
The core-void@shell architecture shows great advantages in enhancing cycling stability and high-rate performance of Si-based anodes. However, it is usually synthesized by template methods which are complex and environmentally unfriendly and would lead to low-efficiency charge and mass exchange because of the single-point van der Waals contact between the Si core and the shell. Here, a facile and benign one-step method to synthesize multi-Si-void@SiO2 structure, where abundant void spaces exist between multiple Si cores that are multi-point attached to a SiO2 shell through strong chemical bonding, is reported. The corresponding electrode exhibits highly stable cycling stability and excellent electrochemical performance. After 200 cycles at a current density of 0.1 A g-1 and then another 200 cycles at 1.2 A g-1 , the electrode outputs a specific capacity of 1440 mAh g-1 . Even at 2.0 A g-1 , it outputs a specific capacity as high as 1182 mAh g-1 . Such an anode can match almost all the cathode materials presently used in lithium-ion batteries. These results demonstrate the multi-Si-void@SiO2 as a promising anode to be used in future commercial lithium-ion batteries of high energy density and high power density.
Collapse
Affiliation(s)
- Xiangyu Bi
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tianyu Tang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xingwang Shi
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - XuHui Ge
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weiwei Wu
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiya Zhang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Wang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
5
|
Pan H, Xu Z, Wei Z, Liu X, Xu M, Zong C, Li W, Cui G, Cao L, Wang Q. Synergistic Double Cross-Linked Dynamic Network of Epoxidized Natural Rubber/Glycinamide Modified Polyacrylic Acid for Silicon Anode in Lithium Ion Battery: High Peel Strength and Super Cycle Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33315-33327. [PMID: 35835451 DOI: 10.1021/acsami.2c08038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silicon (Si), a high-capacity lithium-ion battery anode material, has aroused wide attention. Its further practical application has been limited by its huge volume change during the cycle. To reduce this defect, the double cross-linked product of glycinamide hydrochloride modified poly(acrylic acid) (PAG) and epoxidized natural rubber (ENR) was developed as a water-based binder to obtain sufficient elasticity and a sufficiently strong adhesive force. Due to the double cross-linked structures in the system, the binder was enabled to effectively disperse and transfer the stress generated by the volume expansion of the Si particles and keep the integrity of the electrode during the cycle, thus obtaining excellent cycle performance. When the current density was 1 A g-1, PE55 (PAG: ENR = 1:1 cross-linked polymer) electrode still achieved a specific capacity of 2322.2 mAh g-1 after 100 cycles of constant current charge and discharge, and PE55 binder exhibited excellent bonding properties (4.45 N) and mechanical properties (stress: 5.51 MPa, strain: 87.4%). The comparison of poly(acrylic acid) (PAA) electrodes suggests that the introduction of elastic polymer and the construction of double cross-linked structures can increase the stability of Si anodes.
Collapse
Affiliation(s)
- Hongwei Pan
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Zhengshuai Xu
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Zhaoyang Wei
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Xin Liu
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Minghan Xu
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Chengzhong Zong
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong. Wollongong, New South Wales 2522 Australia
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Lan Cao
- Qingdao University of Science and Technology, Qingdao 266045, China
| | - Qingfu Wang
- Qingdao University of Science and Technology, Qingdao 266045, China
| |
Collapse
|
6
|
Li J, Hu X, Zhao H, Ren Y, Huang X. Cross-Linked Sodium Alginate-Sodium Borate Hybrid Binders for High-Capacity Silicon Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:402-410. [PMID: 34965137 DOI: 10.1021/acs.langmuir.1c02751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries. It has the advantages of high theoretical specific capacity (4200 mAh·g-1), which is 10 times larger than that of a commercial graphite anode (372 mAh·g-1). However, there are some problems such as the pulverization of the electrode and an unstable solid electrolyte interphase (SEI) layer aroused by the huge bulk effect (>300%) of Si during the repeated lithiation/delithiation process. A binder plays a vital role in the conventional lithium-ion batteries that can effectively relieve the bulk expansion stress of a silicon anode. In this work, the inorganic cross-linker sodium borate (SB) and the commonly used binder sodium alginate (SA) were condensed through an esterification reaction and the reaction product was marked as SA-SB. It is found that the mechanical robustness and the peel strength of SA-SB are improved after cross-linking, which is conducive to maintaining the structural stability of the silicon anode in long cycle life. In consequence, the capacity retention of the silicon anode using the SA-SB binder (64.1%) is higher than that of SA (50.6%) after 100 cycles at 0.2 A·g-1.
Collapse
Affiliation(s)
- Jianbin Li
- School of Materials Science and Engineering, Changzhou University, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
- Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Xianchao Hu
- School of Materials Science and Engineering, Changzhou University, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Hongshun Zhao
- School of Materials Science and Engineering, Changzhou University, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Yurong Ren
- School of Materials Science and Engineering, Changzhou University, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
- Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, 21 Gehu Rd, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, 3150 Dongting Rd, Changde, Hunan Province 415000, People's Republic of China
| |
Collapse
|
7
|
Xu K, Liu X, Guan K, Yu Y, Lei W, Zhang S, Jia Q, Zhang H. Research Progress on Coating Structure of Silicon Anode Materials for Lithium-Ion Batteries. CHEMSUSCHEM 2021; 14:5135-5160. [PMID: 34532992 DOI: 10.1002/cssc.202101837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Silicon, which has been widely studied by virtue of its extremely high theoretical capacity and abundance, is recognized as one of the most promising anode materials for the next generation of lithium-ion batteries. However, silicon undergoes tremendous volume change during cycling, which leads to the destruction of the electrode structure and irreversible capacity loss, so the promotion of silicon materials in commercial applications is greatly hampered. In recent years, many strategies have been proposed to address these shortcomings of silicon. This Review focused on different coatings materials (e. g., carbon-based materials, metals, oxides, conducting polymers, etc.) for silicon materials. The role of different types of materials in the modification of silicon-based material encapsulation structure was reviewed to confirm the feasibility of the protective layer strategy. Finally, the future research direction of the silicon-based material coating structure design for the next-generation lithium-ion battery was summarized.
Collapse
Affiliation(s)
- Ke Xu
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Xuefeng Liu
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Keke Guan
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yingjie Yu
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Wen Lei
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, Henan, P. R. China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy and, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
8
|
Hu G, Yu R, Liu Z, Yu Q, Zhang Y, Chen Q, Wu J, Zhou L, Mai L. Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3991-3998. [PMID: 33439618 DOI: 10.1021/acsami.0c19673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Si is a well-known high-capacity lithium-ion battery anode material; however, it suffers from conductivity and volume expansion issues. Herein, we develop a "surface oxidation" strategy to introduce a SiOx layer on Si nanoparticles for subsequent carbon coating. It is found that the surface SiOx layer could facilitate the conformal resin coating process through strong interactions with phenolic resin, and well-defined core@double-shell-structured Si@SiOx@C can be obtained after further carbonization. Without the surface SiOx layer, only a negligible fraction of Si nanoparticles can be encapsulated into the carbon matrix. With enhanced conductivity and confined volume change, Si@SiOx@C demonstrates high reversible capacity as well as long-term durability.
Collapse
Affiliation(s)
- Guangwu Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenhui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiang Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yuanyuan Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiang Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
Liu X, Xu Z, Iqbal A, Chen M, Ali N, Low C, Qi R, Zai J, Qian X. Chemical Coupled PEDOT:PSS/Si Electrode: Suppressed Electrolyte Consumption Enables Long-Term Stability. NANO-MICRO LETTERS 2021; 13:54. [PMID: 34138199 PMCID: PMC8187542 DOI: 10.1007/s40820-020-00564-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/02/2020] [Indexed: 05/22/2023]
Abstract
Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase (SEI) and consume electrolyte. In this article, γ-glycidoxypropyl trimethoxysilane (GOPS) was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial SEI, effectively suppressing the consumption of electrolyte. The optimized electrode can maintain 1000 mAh g-1 for nearly 800 cycles under limited electrolyte compared with 40 cycles of the electrodes without GOPS. Also, the optimized electrode exhibits excellent rate capability. The use of GOPS greatly improves the interface compatibility between Si and PEDOT:PSS. XPS Ar+ etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI. A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh kg-1, offering good stability.
Collapse
Affiliation(s)
- Xuejiao Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhixin Xu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Asma Iqbal
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Chen
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Nazakat Ali
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - CheeTongJohn Low
- Warwick Electrochemical Engineering Group, Energy Innovation Centre, WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - Rongrong Qi
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jiantao Zai
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Xuefeng Qian
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
10
|
Dual crosslinked binders based on poly(2-hydroxyethyl methacrylate) and polyacrylic acid for silicon anode in lithium-ion battery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ran X, Tao J, Chen Z, Yan Z, Yang Y, Li J, Lin Y, Huang Z. Surface heterostructure induced by TiO2 modification in Li-rich cathode materials for enhanced electrochemical performances. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135959] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Liu X, Iqbal A, Ali N, Qi R, Qian X. Ion-Cross-Linking-Promoted High-Performance Si/PEDOT:PSS Electrodes: The Importance of Cations' Ionic Potential and Softness Parameters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19431-19438. [PMID: 32255340 DOI: 10.1021/acsami.0c00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PSS has been studied as a silicon-based binder due to its inherent superior electricity and electrochemical stability. However, it cannot effectively alleviate the huge volume changes of silicon during lithiation/delithiation due to its linear structure, resulting in poor cycling stability. Ion-cross-linking is a usual method to cross-link linear polymers into 3D structures. In this paper, multivalent cations of the 5th period and Group 2 cross-linked PEDOT:PSS were applied as silicon anode binders and studied systematically. It was found that the variation trend of viscosity and conductivity of PEDOT:PSS after cross-linking was consistent with that of ionic potential and softness parameters of multivalent cations. The mesostructure of a binder after cross-linking is influenced by the solubility product constant of sulfites or hydroxides of cations and the growth characteristics of crystals. An Sn4+-cross-linked binder displayed increased viscosity and electrical conductivity and higher reduced modulus and hardness due to its positive softness parameter and higher ion potential. The Si electrode with the Sn4+-cross-linked binder showed improved cycling stability (1876.4 mAh g-1 compared with 1068.4 mAh g-1 of the electrode with the pure PEDOT:PSS binder after 100 cycles) and superior rate capability (∼800 mAh g-1 at an ultrahigh current density of 8.0 A g-1).
Collapse
Affiliation(s)
- Xuejiao Liu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Asma Iqbal
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nazakat Ali
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Rongrong Qi
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Liu X, Zai J, Iqbal A, Chen M, Ali N, Qi R, Qian X. Glycerol-crosslinked PEDOT:PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity. J Colloid Interface Sci 2020; 565:270-277. [DOI: 10.1016/j.jcis.2020.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
|
14
|
Li X, Xing Y, Xu J, Deng Q, Shao LH. Uniform yolk–shell structured Si–C nanoparticles as a high performance anode material for the Li-ion battery. Chem Commun (Camb) 2020; 56:364-367. [DOI: 10.1039/c9cc07997a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform yolk–shell Si–C nanoparticles with a well-defined void space allowing large volume expansion of the Si anode for the Li-ion battery.
Collapse
Affiliation(s)
- Xuequan Li
- Institute of Solid Mechanics
- Beihang University (BUAA)
- Beijing 100083
- China
| | - Yufeng Xing
- Institute of Solid Mechanics
- Beihang University (BUAA)
- Beijing 100083
- China
| | - Jun Xu
- Department of Automotive Engineering
- School of Transportation Science and Engineering
- Beihang University
- Beijing
- China
| | - Qibo Deng
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Li-Hua Shao
- Institute of Solid Mechanics
- Beihang University (BUAA)
- Beijing 100083
- China
| |
Collapse
|
15
|
Fabrication of Si–SiO2@Fe/NC composite from industrial waste AlSiFe powders as high stability anodes for lithium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Ren Y, Zhou X, Tang J, Ding J, Chen S, Zhang J, Hu T, Yang XS, Wang X, Yang J. Boron-Doped Spherical Hollow-Porous Silicon Local Lattice Expansion toward a High-Performance Lithium-Ion-Battery Anode. Inorg Chem 2019; 58:4592-4599. [DOI: 10.1021/acs.inorgchem.9b00158] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongpeng Ren
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jingjing Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jing Ding
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Song Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiaming Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tingjie Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu-Sheng Yang
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinming Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, China
| | - Juan Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Zhou Z, Pan L, Liu Y, Zhu X, Xie X. From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk–shell microspheres by aluminothermic reduction for lithium storage. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Cui J, Yang J, Man J, Li S, Yin J, Ma L, He W, Sun J, Hu J. Porous Al/Al2O3 two-phase nanonetwork to improve electrochemical properties of porous C/SiO2 as anode for Li-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Ahn IK, Lee YJ, Na S, Lee SY, Nam DH, Lee JH, Joo YC. Improved Battery Performance of Nanocrystalline Si Anodes Utilized by Radio Frequency (RF) Sputtered Multifunctional Amorphous Si Coating Layers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2242-2248. [PMID: 29308877 DOI: 10.1021/acsami.7b17890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the high theoretical specific capacity of Si, commercial Li-ion batteries (LIBs) based on Si are still not feasible because of unsatisfactory cycling stability. Herein, amorphous Si (a-Si)-coated nanocrystalline Si (nc-Si) formed by versatile radio frequency (RF) sputtering systems is proposed as a promising anode material for LIBs. Compared to uncoated nc-Si (retention of 0.6% and Coulombic efficiency (CE) of 79.7%), the a-Si-coated nc-Si (nc-Si@a-Si) anodes show greatly improved cycling retention (C50th/Cfirst) of ∼50% and a first CE of 86.6%. From the ex situ investigation with electrochemical impedance spectroscopy (EIS) and cracked morphology during cycling, the a-Si layer was found to be highly effective at protecting the surface of the nc-Si from the formation of solid-state electrolyte interphases (SEI) and to dissipate the mechanical stress upon de/lithiation due to the high fracture toughness.
Collapse
Affiliation(s)
| | | | | | | | | | - Ji-Hoon Lee
- Advanced Functional Thin Films Department, Surface Technology Division, Korea Institute of Materials Science (KIMS) , Changwon, Gyeongnam 51508, Republic of Korea
| | | |
Collapse
|
20
|
Wu C, Tong X, Ai Y, Liu DS, Yu P, Wu J, Wang ZM. A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials. NANO-MICRO LETTERS 2018; 10:40. [PMID: 30393689 PMCID: PMC6199087 DOI: 10.1007/s40820-018-0194-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 05/19/2023]
Abstract
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk-shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail.
Collapse
Affiliation(s)
- Cuo Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yuanfei Ai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - De-Sheng Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Peng Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|