1
|
Salam AA, Ebrahim S, Soliman M, Shokry A. Preparation of silver nanowires with controlled parameters for conductive transparent electrodes. Sci Rep 2024; 14:20986. [PMID: 39251688 PMCID: PMC11385216 DOI: 10.1038/s41598-024-70789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Silver nanowires (AgNWs) have excellent flexibility, unique optical transmittance and high conductivity. The polyol process is appropriate for preparing AgNWs due to its simplicity, effectiveness, low cost, and high yield. This work aims to investigate the effect of preparation parameters of the polyol process on the silver nanowires properties. The parameters include the controlling agent, molecular weight of the polyvinylpyrrolidone (PVP), the temperature, and the reducing agent. The amount of silver nanoparticles formed during preparation was used to determine the optimum preparation conditions. The transmission electron microscope (TEM) images showed minimal amount of Ag nanoparticles when using mixed molecular weight of PVP-40K, and PVP-1.3M at 150 °C with the assistance of copper chloride as a controlling agent. The prepared AgNWs had an average length of 3.7 µm and aspect ratio of 15.3. The fabricated electrodes were characterized using a scanning electron microscope (SEM) and four probe resistivity measurements. The electrical measurement of the AgNWs electrodes indicated that the surfactant thickness is a critical parameter in having low sheet resistance electrodes. Also, the optical transmission was affected by the amount of nanoparticles. The prepared electrode with high concentration of AgNWs and a minimal amount of nanoparticles exhibited 80% optical transmission.
Collapse
Affiliation(s)
- Ahmed Abdel Salam
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Shaker Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Moataz Soliman
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Azza Shokry
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt.
| |
Collapse
|
2
|
Ying Y, Zheng R, Zheng Y, Wang H, Niu J, Xia H. Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate-Poly (Vinylpyrrolidone) Hydrothermal System. Molecules 2024; 29:1558. [PMID: 38611837 PMCID: PMC11013250 DOI: 10.3390/molecules29071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Silver (Ag) nanowires, as an important one-dimensional (1D) nanomaterial, have garnered wide attention, owing to their applications in electronics, optoelectronics, sensors, and other fields. In this study, an alternative hydrothermal route was developed to synthesize Ag nanowires via modified reduction of Ag+. Silver sulfamate plays an important role in the formation of Ag nanowires via controlled release of free Ag+. Results of controlled experiments and characterizations such as UV-vis spectroscopy, FTIR, XPS, and 1H NMR revealed that sulfamic acid does not function as a reductant, supporting by the generation of free Ag+ instead of Ag nanostructures in hydrothermally treated silver sulfamate solution. The initial reduction of Ag+ was induced by the combination of poly (vinylpyrrolidone) (PVP) end group and degradation products. This phenomenon was supported by abundant free Ag+ in the mixed preheated silver sulfamatic and preheated PVP aqueous solutions, indicating a second and distinct Ag+ autocatalytic reduction. Thus, the roles of different reagents and Ag+ reduction must be studied for nanomaterial syntheses.
Collapse
Affiliation(s)
- Yongling Ying
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China;
| | - Rongbo Zheng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China;
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.N.); (H.X.)
| | - Yongjun Zheng
- School of Marine Science and Technology, Shanwei Institute of Technology, Shanwei 516600, China
| | - Hongyan Wang
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China;
| | - Junfeng Niu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.N.); (H.X.)
| | - Housheng Xia
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.N.); (H.X.)
| |
Collapse
|
3
|
Huang J, Hua L, Li J, Xu X, Song L, Lu Z. Sandwiched film of graphene/silver nanowire conductive layer reinforced by hydroxyethyl cellulose bond layer. Int J Biol Macromol 2024; 258:128883. [PMID: 38141715 DOI: 10.1016/j.ijbiomac.2023.128883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Multilayer nanocomposite film made of different materials has multifunctional properties and is applied in the field of flexible electronic devices. Herein, hydroxyethyl cellulose (HEC) and boron nitride nanosheets (BNNS) were used as the matrix and thermal conductivity material of the HEC/BNNS (HB) insulation layer and were combined with conductive blade structure graphene/silver nanowires (GA) film to prepare a three-layer HB/GA20/HB film. Using the high mechanical properties of the HEC based film, the tensile strength of the three-layer film is increased to 22.0 MPa, 633 % higher than that of the pure conductive film. The sensor prepared by multilayer film has good bending sensing performance (1500 cycles) and electromagnetic shielding performance (29.3 dB). The heating temperature of HB/GA20/HB film heater is up to 107.9 °C at 20 V. In the HB/GA20/HB film, the external HB layer provides insulation, thermal conductivity and physical support, and the internal GA layer with good conductive and sensing properties is combined to build a multi-functional sensor, which can be applied as a mobile sensor, heater and electromagnetic shielding material in the flexible wearable field.
Collapse
Affiliation(s)
- Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaoxu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lizhi Song
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Burmatova A, Khannanov A, Gerasimov A, Ignateva K, Khaldeeva E, Gorovaia A, Kiiamov A, Evtugyn V, Kutyreva M. A Hyperbranched Polyol Process for Designing and Manufacturing Nontoxic Cobalt Nanocomposite. Polymers (Basel) 2023; 15:3248. [PMID: 37571141 PMCID: PMC10421248 DOI: 10.3390/polym15153248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35-50 nm with immobilized cobalt nanoparticles of 5-7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms-1 × 10-5 and 4.14 mM·ms-1 × 10-5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal-polymer nanocomposites for theranostics.
Collapse
Affiliation(s)
- Anastasia Burmatova
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Artur Khannanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Alexander Gerasimov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Klara Ignateva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Elena Khaldeeva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
- Kazan Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya Str., 420015 Kazan, Russia
| | - Arina Gorovaia
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Airat Kiiamov
- Quantum Simulators Lab, Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
| | - Vladimir Evtugyn
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Marianna Kutyreva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| |
Collapse
|
5
|
Controlled synthesis of silver/silver chloride composite crystals from [AgCl2]- complex and its photocatalysis properties on organic pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Xu C, Zhou J, Ye Y, Tang B. Insights into enzymatic mimicking activity of silver nanoprisms: spectral monitoring and analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120083. [PMID: 34171547 DOI: 10.1016/j.saa.2021.120083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Peroxidase-like reaction process involving o-phenylenediamine (OPD) and silver nanoprisms in the presence of hydrogen peroxide (H2O2) was monitored using time-resolved ultraviolet-visible (UV-Vis) absorption spectroscopy. The oxidation of OPD and etching of silver nanoprisms were investigated by analyzing the dynamic spectral data. Two-dimensional correlation spectroscopy (2D-COS) and principal component analysis (PCA) were employed to gain insights into the correlation between catalytic oxidation of OPD and etching of silver nanoprisms. It was found that OPD offered significant protection effect for silver nanoprisms so that morphologies of silver nanoprisms maintained at the beginning period after addition of H2O2. Moreover, silver nanoprisms accelerated the oxidation of OPD by H2O2, demonstrating enzymatic mimicking activity of silver nanoprisms. The combination of time-resolved UV-Vis absorption spectroscopy and spectral calculation methods could be used for exploration of complex reaction systems with spectral variations.
Collapse
Affiliation(s)
- Chengna Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bin Tang
- Institute for Frontier Materials, Deakin University, Geelong, Australia; National Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
7
|
Zheng M, Fang G. Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures. NANOSCALE 2021; 13:16427-16447. [PMID: 34590647 DOI: 10.1039/d1nr05667k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal halide perovskites, as newly emerging light emitters, have been attracting considerable attention on luminescent materials and devices, due to their superior optoelectronic properties and potential practical applications. Recently, perovskite light-emitting diodes (PeLEDs) based on lead halide perovskites (LHPs) have been largely designed and intensively studied in laboratory platforms. However, to satisfy demand and promote their commercialization, it is crucial to improve the efficiency and stability of PeLEDs. Accordingly, the surface-plasmon (SP) effect provides a promising approach to enhance their luminescence, which is realized by incorporating plasmonic metal nanostructures (NSs) into PeLEDs. This review presents a comprehensive overview of the research status and prospect on LHP-based plasmonic PeLEDs together with the corresponding perovskite light-emission films (PeLEFs). Firstly, the recent development of the PeLEDs is briefly introduced. Secondly, the mechanisms and photophysics of the PeLEDs by SP manipulation are simply illustrated and analyzed. Then, the recent progress and achievements on the theoretical and experimental results of SP effect applications in the PeLEDs together with PeLEFs are presented in detail and systematically reviewed. Next, the current challenges and future directions of the PeLEDs are shown and discussed. Finally, a critical summary and outlook of the PeLEDs are summarized and proposed. Our results indicate that this new class of LHP-based plasmonic PeLEDs presents future research fields and demonstrates promising applications in lighting and displays, and further luminescence enhancement in exciton radiation processes and light extraction techniques are a hopeful route to obtain high-performance PeLEDs.
Collapse
Affiliation(s)
- Mingfei Zheng
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Guojia Fang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
8
|
Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Qiao M, Li J, Chen T, He X, Meng M, Lei X, Wei J, Zhang Q. One-dimensional Ag-CoNi nanocomposites modified with amorphous Sn(OH) 2/SnO 2 shells for broadband microwave absorption. J Colloid Interface Sci 2021; 604:616-623. [PMID: 34280759 DOI: 10.1016/j.jcis.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
High-performance microwave absorption absorbers play important roles in the fields of radar stealth, electromagnetic protection, and antenna technology. In this work, high aspect-ratio Ag nanowires were decorated with magnetic CoNi nanoparticles via a PVP-induced solvothermal method, and then amorphous Sn(OH)2/SnO2 shells were introduced through an in-situ oxidative hydrolysis method, successfully preparing Ag-CoNi@Sn(OH)2/SnO2 composites. The morphology and ingredient of composites were ascertained by SEM, TEM, XRD, EDX, and XPS. As Ag-CoNi nanocomposites are coated by Sn(OH)2/SnO2 shells, the minimum reflection loss value is decreased from -31.7 dB (10.1 GHz) to -37.8 dB (6.4 GHz), and the maximum effective absorption bandwidth is extended from 3.9 GHz (10.3-14.2 GHz) to 5.8 GHz (10.7-16.5 GHz). Analyses of electromagnetic parameters reveal the possible mechanisms, involving surface plasma resonance, conductive loss, interfacial polarization, dipole polarization, exchange resonance, eddy current effect, multiple reflection and scattering. Thus, Ag nanowires modified with CoNi nanoparticles and amorphous Sn(OH)2/SnO2 shells can effectively balance the impedance matching and attenuation capability. It is a new strategy to achieve broadband microwave absorbers.
Collapse
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shaanxi Key Laboratory of Nano-materials and Techanology, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China.
| | - Jiaxin Li
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China
| | - Tiantian Chen
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meiyu Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jian Wei
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China; Shaanxi Key Laboratory of Nano-materials and Techanology, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, PR China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
10
|
Lu JM, Wang HF, Pan JZ, Fang Q. Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Gu L, Wen K, Peng Q, Huang W, Wang J. Surface-Plasmon-Enhanced Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001861. [PMID: 32573954 DOI: 10.1002/smll.202001861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20-50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near-field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP-enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP-enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Lianghui Gu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
12
|
Villalpando M, Saavedra-Molina A, Rosas G. A facile synthesis of silver nanowires and their evaluation in the mitochondrial membrane potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110973. [PMID: 32994023 DOI: 10.1016/j.msec.2020.110973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Abstract
Silver nanowires (AgNWs) with a high-aspect-ratio were successfully synthesized by a green method using Lavandula angustifolia plant extract. The morphology of the AgNWs was evaluated as a function of the concentration of precursor salt and nucleating agent. Furthermore, AgNWs were analyzed in a biological model using rat liver mitochondria by measuring their effect on membrane potential. The scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques structurally characterized the nanowires obtained. Also, ultraviolet-visible spectroscopy (UV-Vis) investigated the optical properties of AgNWs. Structural studies show AgNWs fcc with lengths up to 100 μm and diameters ranging from 60 to 130 nm growing in the [110] orientation. Both the CuSO4 nucleating agent and the centrifugation process are essential for the growth of nanowires. Furthermore, inhibition of mitochondrial membrane potential (MMP) depends on the concentration of the nanowires (NWs), suggesting dissipation of the electron transport chain. In this way, AgNWs can be used as a potential tool to verify biological reactions, such as modulation of metabolic pathways, together with the evaluation of a possible influence of biotic or abiotic factors in organisms.
Collapse
Affiliation(s)
- M Villalpando
- Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, C.P. 58000 Morelia, Michoacán, Mexico.
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3, Ciudad Universitaria, C.P. 58000 Morelia, Michoacán, Mexico.
| | - G Rosas
- Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, C.P. 58000 Morelia, Michoacán, Mexico.
| |
Collapse
|
13
|
Bui HK, Seo TS. A micrometer head integrated microfluidic device for facile droplet size control and automatic measurement of a droplet size. Electrophoresis 2019; 41:306-310. [PMID: 31785603 DOI: 10.1002/elps.201900350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/07/2022]
Abstract
A novel microfluidic droplet generator is proposed, which can control the droplet size through turning an integrated micrometer head with ease, and the size of the produced micro-droplet can be automatically and real-time monitored by an open-sourced software and off-the-shelf hardware.
Collapse
Affiliation(s)
- Hoang Khang Bui
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Han HJ, Park JH, Park JK, Kristanto I, Park BJ, Kwak SK, Im SH. Uniform Ag Nanocubes Prepared by AgCl Particle-Mediated Heterogeneous Nucleation and Disassembly and Their Mechanism Study by DFT Calculation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904031. [PMID: 31496116 DOI: 10.1002/smll.201904031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Uniform Ag nanocubes are reproducibly synthesized by a AgCl particle-mediated heterogeneous nucleation and disassembly process in polyol chemistry. By introducing N,N-dimethylformamide (DMF) in a conventional polyol method with HCl etchant, Ag nanocrystals (NCs) begin to be nucleated on the surface of AgCl-precipitated particles due to the promoted reduction reaction by DMF. The nucleated Ag NCs on the AgCl particles are grown to Ag nanocubes in shape by consuming Ag sources from the AgCl mother particles. Eventually the grown Ag nanocubes are disassembled from the mother AgCl particles because the AgCl particles are fully digested by the growing Ag nanocubes. Density functional theory calculation confirms that the Ag atoms can be favorably deposited on the (100) facet of AgCl particles and the Ag nuclei on the AgCl particles tend to reveal (100) facet.
Collapse
Affiliation(s)
- Hye Ji Han
- Department of Chemical Engineering, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ju Hyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jin Kyoung Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Imanuel Kristanto
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
15
|
Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal JY, Sicard L, Viau G. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem Soc Rev 2018; 47:5187-5233. [PMID: 29901663 DOI: 10.1039/c7cs00777a] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After about three decades of development, the polyol process is now widely recognized and practised as a unique soft chemical method for the preparation of a large variety of nanoparticles which can be used in important technological fields. It offers many advantages: low cost, ease of use and, very importantly, already proven scalability for industrial applications. Among the different classes of inorganic nanoparticles which can be prepared in liquid polyols, metals were the first reported. This review aims to give a comprehensive account of the strategies used to prepare monometallic nanoparticles and multimetallic materials with tailored size and shape. As regards monometallic materials, while the preparation of noble as well as ferromagnetic metals is now clearly established, the scope of the polyol process has been extended to the preparation of more electropositive metals, such as post-transition metals and semi-metals. The potential of this method is also clearly displayed for the preparation of alloys, intermetallics and core-shell nanostructures with a very large diversity of compositions and architectures.
Collapse
Affiliation(s)
- F Fiévet
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, CNRS UMR 7086, 15 rue J.-A. de Baïf, 75205 Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang XJ, Qu YR, Zhao YL, Chu HB. Effect of the Composition of Lanthanide Complexes on Their Luminescence Enhancement by Ag@SiO₂ Core-Shell Nanoparticles. NANOMATERIALS 2018; 8:nano8020098. [PMID: 29425191 PMCID: PMC5853729 DOI: 10.3390/nano8020098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
Abstract
Metal-enhanced luminescence of lanthanide complexes by noble metal nanoparticles has attracted much attention because of its high efficiency in improving the luminescent properties of lanthanide ions. Herein, nine kinds of europium and terbium complexes—RE(TPTZ)(ampca)3·3H2O, RE(TPTZ)(BA)3·3H2O, RE(phen)(ampca)3·3H2O, RE(phen)(PTA)1.5·3H2O (RE = Eu, Tb) and Eu(phen)(BA)3·3H2O (TPTZ = 2,4,6-tri(2-pyridyl)-s-triazine, ampca = 3-aminopyrazine-2-carboxylic acid, BA = benzoic acid, phen = 1,10-phenanthroline, PTA = phthalic acid)—have been synthesized. Meanwhile, seven kinds of core-shell Ag@SiO2 nanoparticles of two different core sizes (80–100 nm and 40–60 nm) and varied shell thicknesses (5, 12, 20, 30 and 40 nm) have been prepared. The combination of these nine types of lanthanide complexes and seven kinds of Ag@SiO2 nanoparticles provides an opportunity for a thorough investigation of the metal-enhanced luminescence effect. Luminescence spectra analysis showed that the luminescence enhancement factor not only depends on the size of the Ag@SiO2 nanoparticles, but also strongly relates to the composition of the lanthanide complexes. Terbium complexes typically possess higher enhancement factors than their corresponding europium complexes with the same ligands, which may result from better spectral overlap between the emission bands of Tb complexes and surface plasmon resonance (SPR) absorption bands of Ag@SiO2. For the complexes with the same lanthanide ion but varied ligands, the complexes with high enhancement factors are typically those with excitation wavelengths located nearby the SPR absorption bands of Ag@SiO2 nanoparticles. These findings suggest a combinatorial chemistry strategy is necessary to obtain an optimal metal-enhanced luminescence effect for lanthanide complexes.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China.
| | - Yan-Rong Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China.
| | - Yong-Liang Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China.
| | - Hai-Bin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China.
| |
Collapse
|
17
|
Optimal Structure of a Plasmonic Chip for Sensitive Bio-Detection with the Grating-Coupled Surface Plasmon-Field Enhanced Fluorescence (GC-SPF). MATERIALS 2017; 10:ma10091063. [PMID: 28891989 PMCID: PMC5615717 DOI: 10.3390/ma10091063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 01/20/2023]
Abstract
Surface plasmon field-enhanced fluorescence (SPF) has been one of the powerful tools for biosensors and bioimaging. A wavelength-scale periodic structure coated with a thin metal film is called a plasmonic chip, and it can provide SPF. SPF of Cy5-streptavidin (Cy5-SA) was measured on a biotinylated plasmonic chip with a grating of 480 nm-pitch. The optimal structure of a plasmonic sensor-chip was designed for improving detection sensitivity. The silver film thickness dependence of the SPF intensity was measured under the irradiation of the top panel of a sensor chip. Furthermore, the dependence of the SPF intensity on the distance from the metal surface was also investigated. The optimal structure for the largest fluorescence enhancement factor was 150 nm-thick silver and 10 nm-thick SiO2 layers due to the enhanced electric field (excitation field), the surface plasmon coupled emission (SPCE), and the interference effect with reflected light. The largest enhancement factor was found to be 170-fold. Furthermore, not only the largest fluorescence intensity but also stable lower background noise were found to be essential for higher-sensitive detection.
Collapse
|