1
|
Zhu JJ. Architectural organization of ∼1,500-neuron modular minicolumnar disinhibitory circuits in healthy and Alzheimer's cortices. Cell Rep 2023; 42:112904. [PMID: 37531251 DOI: 10.1016/j.celrep.2023.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.
Collapse
Affiliation(s)
- J Julius Zhu
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 GL Nijmegen, the Netherlands; Departments of Pharmacology and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Konyshev I, Byvalov A. Model systems for optical trapping: the physical basis and biological applications. Biophys Rev 2021; 13:515-529. [PMID: 34471436 DOI: 10.1007/s12551-021-00823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
The micromechanical methods, among which optical trapping and atomic force microscopy have a special place, are widespread currently in biology to study molecular interactions between different biological objects. Optical trapping is reported to be quite applicable to study the mechanical properties of surface structures onto bacterial (pili and flagella) and eukaryotic (filopodia) cells. The review briefly summarizes the physical basis of optical trapping, as well as the principles of calculating the van der Waals, electrostatic, and donor-acceptor forces when two microparticles or a microparticle and a flat surface are used. Three main types of model systems (abiotic, biotic, and mixed) used in trapping experiments are described, and the peculiarities of manipulation with living (bacteria, fungal spores, etc.) and non-spherical objects (e.g., rod-shaped bacteria) are summarized.
Collapse
Affiliation(s)
- Ilya Konyshev
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Komi Republic, 167982 Syktyvkar, Russian Federation.,Vyatka State University, 36 Moskovskaya str, 610000 Kirov, Russian Federation
| | - Andrey Byvalov
- Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Komi Republic, 167982 Syktyvkar, Russian Federation.,Vyatka State University, 36 Moskovskaya str, 610000 Kirov, Russian Federation
| |
Collapse
|
3
|
Zhang L, Zhang P, Wang G, Zhang H, Zhang Y, Yu Y, Zhang M, Xiao J, Crespo P, Hell JW, Lin L, Huganir RL, Zhu JJ. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron 2018; 98:783-800.e4. [PMID: 29706584 PMCID: PMC6192044 DOI: 10.1016/j.neuron.2018.03.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/12/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Huaye Zhang
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Yajun Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yilin Yu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxu Zhang
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabriaand CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Johannes W Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; School of Medicine, Ningbo University, Ningbo 315010, China; Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen, the Netherlands
| |
Collapse
|