1
|
Wu Y, Luo L, Hao Z, Liu D. DNA-based nanostructures for RNA delivery. MEDICAL REVIEW (2021) 2024; 4:207-224. [PMID: 38919398 PMCID: PMC11195427 DOI: 10.1515/mr-2023-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 06/27/2024]
Abstract
RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Beijing SupraCirc Biotechnology Co., Ltd, Beijing, China
| | - Liangzhi Luo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dongsheng Liu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Yang B, Cui T, Guo L, Dong L, Wu J, Xing Y, Xu Y, Chen J, Wang Y, Cui Z, Dong Y. Advanced Smart Biomaterials for Regenerative Medicine and Drug Delivery Based on Phosphoramidite Chemistry: From Oligonucleotides to Precision Polymers. Biomacromolecules 2024; 25:2701-2714. [PMID: 38608139 DOI: 10.1021/acs.biomac.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.
Collapse
Affiliation(s)
- Bo Yang
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Ting Cui
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Liang Guo
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Lianqiang Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yun Xu
- Center for Medical Device Evaluation, China Food and Drug Administration (CFDA), Beijing 100084, China
| | - Jian Chen
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Yufei Wang
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Zhonghui Cui
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang Y, Tang H, Wang R, Zhang L. Enhancing Crystallization of DNA-Functionalized Nanoparticles by Polymer Chains. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
4
|
Xu R, Li Y, Zhu C, Liu D, Yang YR. Cellular Ingestible DNA Nanostructures for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rui Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chenyou Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuhe R. Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
5
|
Zhang Y, Tang H, Wang R. Controlling the two components modified on nanoparticles to construct nanomaterials. SOFT MATTER 2022; 18:8213-8222. [PMID: 36285648 DOI: 10.1039/d2sm00877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoparticle self-assembly technology has made great progress in the past 30 years. Many kinds of self-assembly strategies of modifiable nanoparticles have been developed and used to construct nano-aggregates by designing the shape, size and type of nanoparticles and controlling the components modified on nanoparticles. These strategies are widely used in many fields, such as medical diagnosis, biological detection, drug delivery, materials synthesis and sensors. The modified components can be DNA chains, polymer chains, proteins, and even organic molecules based on different molecular conformations and chemical properties. In recent years, the self-assembly of two-component modified nanoparticles has gradually attracted more attention. Nanoparticles modified with two components of different DNA strands can self-assemble to produce a variety of nano arrangement structures, such as BCC, FCC and other cubic crystals, which can be used in crystal materials. Two-component modification of hydrophilic and hydrophobic polymers can produce vesicular aggregates, which can be used for drug delivery. In this review, we summarize the latest experimental progress and theoretical simulation of self-assembly of two-component modified nanoparticles including different DNA chains, different polymer chains, DNA and polymer chains, proteins and polymer chains, and different organic molecules. Their self-assembly characteristics and application prospects were discussed. Compared with single-component modified nanoparticles, two-component nanoparticles have different tethered molecules or molecular chains, which can be multifunctional by regulating different modified components and types of nanoparticles and ultimately expand the scope of applications.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Dong Y, Yang Y, Lin C, Liu D. Frame-Guided Assembly of Amphiphiles. Acc Chem Res 2022; 55:1938-1948. [PMID: 35786832 DOI: 10.1021/acs.accounts.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusAmphiphiles tend to self-assemble into various structures and morphologies in aqueous environments (e.g., micelles, tubes, fibers, vesicles, and lamellae). These assemblies and their properties have made significant impact in traditional chemical industries, e.g., increasing solubility, decreasing surface tension, facilitating foaming, etc. It is well-known that the molecular structure and its environment play a critical role in the assembly process, and many theories, including critical packing factor, thermodynamic models, etc., have been proposed to explain and predict the assembly morphology. It has been recognized that the morphology of the amphiphilic assembly plays important roles in determining the functions, such as curvature-dependent biophysical (e.g., liposome fusion and fission) and biochemical (e.g., lipid metabolism and membrane protein trafficking) processes, size-related EPR (enhanced permeability and retention) effects, etc. Meanwhile, various nanomaterials have promised great potential in directing the arrangement of molecules, thus generating unique functions. Therefore, control over the amphiphilic morphology is of great interest to scientists, especially in nanoscale with the assistance of functional nanomaterials. However, how to precisely manipulate the sizes and shapes of the assemblies is challenged by the entropic nature of the hydrophobic interaction. Inspired by the "cytoskeleton-membrane protein-lipid bilayer" principle of the cell membrane, a strategy termed "frame-guided assembly (FGA)" has been proposed and developed to direct the arrangement of amphiphiles. The FGA strategy welcomes various nanomaterials with precisely controlled properties to serve as scaffolds. By introducing scattered hydrophobic molecules, which are defined as either leading hydrophobic groups (LHGs) or nucleation seeds onto a selected scaffold, a discontinuous hydrophobic trace along the scaffold can be outlined, which will further guide the amphiphiles in the system to grow and form customized two- or three-dimensional (2D/3D) membrane geometries.Topologically, the supporting frame can be classified as three types including inner-frame, outer-frame, and planar-frame. Each type of FGA assembly possesses particular advantages: (1) The inner-frame, similar to endoskeletons of many cellular structures, steadily supports the membrane from the inside and exposes the full surface area outside. (2) The outer-frame, on the other hand, molds and constrains the membrane-wrapped vesicles to regulate their size and shape. It also allows postengineering of the frame to precisely decorate and dynamically manipulate the membrane. (3) The planar-frame mediates the growth of the 2D membrane that profits from the scanning-probe microscopic characterization and benefits the investigation of membrane proteins.In this Account, we introduce the recent progress of frame-guided assembly strategy in the preparation of customized amphiphile assemblies, evaluate their achievements and limitations, and discuss prospective developments and applications. The basic principle of FGA is discussed, and the morphology controllability is summarized in the inner-, outer-, and planar-frame categories. As a versatile strategy, FGA is able to guide different types of amphiphiles by designing specific LHGs for given molecular structures. The mechanism of FGA is then discussed systematically, including the driving force of the assembly, density and distribution of the LHGs, amphiphile concentration, and the kinetic process. Furthermore, the applications of FGA have been developed for liposome engineering, membrane protein incorporation, and drug delivery, which suggest the huge potential of FGA in fabricating novel and functional complexes.
Collapse
Affiliation(s)
- Yuanchen Dong
- Institute of Chemistry, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, United States.,Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020; 59:15176-15180. [DOI: 10.1002/anie.202005334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
9
|
|
10
|
Bian B, Zhang YY, Dong YC, Wu F, Wang C, Wang S, Xu Y, Liu DS. The investigation of the stability of DNA-b-PPO vesicles formed through frame guided assembly. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9309-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|