1
|
Schlicke H, Maletz R, Dornack C, Fery A. Plasmonic Particle Integration into Near-Infrared Photodetectors and Photoactivated Gas Sensors: Toward Sustainable Next-Generation Ubiquitous Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403502. [PMID: 39291897 PMCID: PMC11600690 DOI: 10.1002/smll.202403502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Current challenges in environmental science, medicine, food chemistry as well as the emerging use of artificial intelligence for solving problems in these fields require distributed, local sensing. Such ubiquitous sensing requires components with 1) high sensitivity, 2) power efficiency, 3) miniaturizability, and 4) the ability to directly interface with electronic circuitry, i.e., electronic readout of sensing signals. Over the recent years, several nanoparticle-based approaches have found their way into this field and have demonstrated high performance. However, challenges remain, such as the toxicity of many of today's narrow bandgap semiconductors for NIR detection and the high energy consumption as well as low selectivity of state-of-the-art commercialized gas sensors. With their unique light-matter interaction and ink-based fabrication schemes, plasmonic nanostructures provide potential technological solutions to these challenges, leading also to better environmental performance. In this perspective recent approaches of using plasmonic nanoparticles are discussed for the fabrication of NIR photodetectors and light-activated, energy-efficient gas sensing devices. In addition, new strategies implying computational approaches are pointed out for miniaturizable spectrometers, exploiting the wide spectral tunability of plasmonic nanocomposites, and for selective gas sensors, utilizing dynamic light activation. The benefits of colloidal approaches for device fabrication are discussed with regard to technological advantages and environmental aspects, which are barely considered so far.
Collapse
Affiliation(s)
- Hendrik Schlicke
- Leibniz Institute for Polymer Research DresdenHohe Straße 601069DresdenGermany
| | - Roman Maletz
- Faculty of Environmental SciencesInstitute of Waste Management and Circular EconomyTUD Dresden University of TechnologyPratzschwitzer Straße 1501796PirnaGermany
| | - Christina Dornack
- Faculty of Environmental SciencesInstitute of Waste Management and Circular EconomyTUD Dresden University of TechnologyPratzschwitzer Straße 1501796PirnaGermany
| | - Andreas Fery
- Leibniz Institute for Polymer Research DresdenHohe Straße 601069DresdenGermany
- Physical Chemistry of Polymeric MaterialsTUD Dresden University of TechnologyBergstraße 6601069DresdenGermany
| |
Collapse
|
2
|
Zhang C, Huang L, Sun DW, Pu H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127824. [PMID: 34838354 DOI: 10.1016/j.jhazmat.2021.127824] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Gold nanorods (GNRs) outstand in photothermal disinfection but are faced with severe surface chemistry and dose relevant biotoxicity. Herein, a naturally green building block, metal-phenolic networks (MPNs), was employed to functionalize GNRs via coordination reaction, yielding a tunable and biocompatible core-shell photothermal nano-bactericide (GNRs@MPNs). The bioactive GNRs@MPNs built with iron and polyphenols (tannic acid, epigallocatechin gallate, and procyanidins) exhibited superior light-to-heat conversion efficiencies with η = 29.29-44.00%, remarkably preceding that of GNRs (η = 12.24%), which could rapidly ablate 99.8% of Escherichia coli O157: H7 and 98.6% of Staphylococcus aureus bacteria in relatively low efficacy doses (10 ppm of Au). Moreover, local heat triggered by GNRs@MPNs accelerated the healing of the cutaneous wound of a mice model infected by methicillin-resistant S. aureus. The facile synthesis, photothermal synergy, polyphenolic bioactivity, and significantly low efficacy dose of GNRs@MPNs empower them satisfactory efficiency and biosafety in the future broad-spectrum photothermal sterilization applications.
Collapse
Affiliation(s)
- Cuiyun Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
3
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Xiang H, Xin C, Hu Z, Aigouy L, Chen Z, Yuan X. Long-Term Stable Near-Infrared-Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45957-45965. [PMID: 34520660 DOI: 10.1021/acsami.1c11674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Chenghao Xin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lionel Aigouy
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Xiaojiao Yuan
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
5
|
Guo Q, Wu X, Duan X, He S, Pang W, Wang Y. Plasmon mediated spectrally selective and sensitivity-enhanced uncooled near-infrared detector. J Colloid Interface Sci 2021; 586:67-74. [PMID: 33168169 DOI: 10.1016/j.jcis.2020.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022]
Abstract
Here, we present a high performance uncooled near-infrared (NIR) detector comprising of a giga hertz (GHz) solidly mounted resonator (SMR) and gold nanorods (GNRs) arrays. By coupling the localized surface plasmon resonances of GNRs, the resonator system exhibits optimized optical response to vis-NIR region. Both simulation and experiments demonstrate the hybrid GNRs-SMR exhibit significantly enhanced optical responsive sensitivity of NIR, the tunable aspect ratios (AR) of GNRs enable resonator respond sensitively to selected light. Specially, taking advantage of the acoustofluidic effect of SMR, the GNRs can be controllably and precisely modified on the microchip surface in an ultra-short time, which addresses one of the most fundamental challenges in the localized functionalization of micro/nano scale surface. The presented work opens new directions in development of novel miniaturized, tunable NIR detector.
Collapse
Affiliation(s)
- Quanquan Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Xiang H, Zhou L, Lin HJ, Hu Z, Zhao N, Chen Z. Upconversion nanoparticles extending the spectral sensitivity of silicon photodetectors to λ = 1.5 μm. NANOTECHNOLOGY 2020; 31:495201. [PMID: 32990270 DOI: 10.1088/1361-6528/abb2c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The telecommunication wavelength of λ = 1.5 μm has been playing an important role in various fields. In particular, performing photodetection at this wavelength is challenging, demanding more performance stability and lower manufacturing cost. In this work, upconversion nanoparticle (UCNP)/Si hybrid photodetectors (hybrid PDs) are presented, made by integrating solution-processed Er3+-doped NaYF4 upconversion nanoparticles (UCNPs) onto a silicon photodetector. After optimization, we demonstrated that a layer of UCNPs can well lead to an effective spectral sensitivity extension without sacrificing the photodetection performance of the Si photodetector in the visible and near-infrared (near-IR) spectrum. Under λ = 1.5 μm illumination, the hybrid UCNPs/Si-PD exhibits a room-temperature detectivity of 6.15 × 1012 Jones and a response speed of 0.4 ms. These UCNPs/Si-PDs represent a promising hybrid strategy in the quest for low-cost and broadband photodetection that is sensitive in the spectrum from visible light down to the short-wave infrared.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lei Zhou
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai×3an 223003, People's Republic of China
| | - Hung-Ju Lin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, People's Republic of China
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| |
Collapse
|
7
|
Xiang H, Hu Z, Billot L, Aigouy L, Chen Z. Hybrid plasmonic gold-nanorod-platinum short-wave infrared photodetectors with fast response. NANOSCALE 2019; 11:18124-18131. [PMID: 31506660 DOI: 10.1039/c9nr04792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Short-wave infrared (SWIR) photodetectors, sensitive to the wavelength range between 1 and 3 μm, are essential components for various applications, which constantly demand devices with a lower cost, a higher responsivity and a faster response. In this work, a new hybrid device structure is presented for SWIR photodetection composing a coupling between solution-processed colloidal plasmonic gold (Au) NRs and a morphology-optimized resistive platinum (Pt) microwire. Pt microwires harvest efficiently the photothermal effect of Au NRs and in return generating a change of device resistance. A fast photon-heat-resistance conversion happens in these Au-NRs/Pt photodetectors exhibiting a response (rise) time of 97 μs under the illumination of a λ = 1.5 μm laser. Clear photoresponse can be observed in these devices at a laser illumination with a modulation frequency up to 50 kHz. The photoresponsivity of the current devices reached 4500 Ω W-1 under a laser power of 0.2 mW, which is equivalent to a responsivity of 340 mA W-1 under a DC bias of 1 V. A series of mapping experiments were performed providing a direct correlation between Au NRs and the device zone where resistance change happens under a laser illumination modulated at different frequencies.
Collapse
Affiliation(s)
- Hengyang Xiang
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
8
|
Tang SY, Medina H, Yen YT, Chen CW, Yang TY, Wei KH, Chueh YL. Enhanced Photocarrier Generation with Selectable Wavelengths by M-Decorated-CuInS 2 Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS 2 Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803529. [PMID: 30663255 DOI: 10.1002/smll.201803529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/13/2018] [Indexed: 05/10/2023]
Abstract
A facile approach for the synthesis of Au- and Pt-decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20-40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers-based photodetectors. Remarkably, by using Pt- or Au-decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2 -based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.
Collapse
Affiliation(s)
- Shin-Yi Tang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Henry Medina
- Department of Electronic Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Yu-Ting Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Chia-Wei Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Tzu-Yi Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, 30010, Hsinchu, Taiwan, ROC
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| |
Collapse
|