1
|
Li S, Wu F, Zhang X, Han G, Si Y, Yu J, Ding B. Flexible Al 2O 3/ZrO 2 nanofibrous membranes for thermal insulation. CrystEngComm 2022. [DOI: 10.1039/d1ce01512e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flexible Al2O3/ZrO2 nanofibrous membranes of low density and high working temperature were fabricated by sol–gel electrospinning, and could be used for thermal-insulation applications.
Collapse
Affiliation(s)
- Shouzhen Li
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Xuan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Guangting Han
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P.R. China
| |
Collapse
|
2
|
Wang F, Liu M, Ding R, Liang M, Huang L, Yu J, Si Y. Rechargeable Antibacterial Polysulfonamide-Based N-Halamine Nanofibrous Membranes for Bioprotective Applications. ACS APPLIED BIO MATERIALS 2019; 2:3668-3677. [DOI: 10.1021/acsabm.9b00537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mei Liu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruida Ding
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingguang Liang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
3
|
Yan J, Zhao Y, Wang X, Xia S, Zhang Y, Han Y, Yu J, Ding B. Polymer Template Synthesis of Soft, Light, and Robust Oxide Ceramic Films. iScience 2019; 15:185-195. [PMID: 31077943 PMCID: PMC6514271 DOI: 10.1016/j.isci.2019.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
Oxide ceramic materials underpin a wide variety of technologies. However, the inherent fragility of these materials limits their use in emerging fields like wearable electronics and soft energy storage devices. Here, we develop a sol-gel electrospinning technique followed by calcination to create a range of oxide ceramic nanofiber films that exhibit significant softness without fragility after various deformations. This approach causes the ceramic crystals to fuse together at a low temperature during their growth within the polymer nanofiber templates. All the synthesized ceramic films, from SiO2 to BaTiO3, Li0.33La0.56TiO3, and Li7La3Zr2O12, have silk-like softness of <31 mN, low density of <0.36 g/cm3 and robust fire resistance to 1,000°C. Fabricated separators based on these films display large electrolyte uptakes of >900% and high thermal insulation performance, enhancing the rate capability and safety of lithium batteries. The reported method allows scalable synthesis of soft oxide ceramic films with properties appealing for applications. A scalable method is developed for the fabrication of soft oxide ceramic films A wide variety of soft, light, and robust oxide ceramic films are fabricated A detailed soft deformation mechanism of the ceramic films is illustrated The soft ceramic films exhibit appealing properties for applications
Collapse
Affiliation(s)
- Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Yun Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuhui Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuanyuan Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuhui Han
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|