1
|
Dong K, Zhou Q, Gao B. New light-illuminated silk road: emerging silk fibroin-based optical biomedical sensors. Analyst 2024; 149:4322-4342. [PMID: 39073410 DOI: 10.1039/d4an00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biomedical silk protein optics has become the subject of intensive research aimed at solving the challenges associated with traditional medical devices in terms of biocompatibility and performance balance. With its significant potential for biomedical applications in the field of drug storage and wound monitoring, it is dedicated to reducing the perturbation of neighbouring tissues. The transparency and biocompatibility of silk proteins make them ideal materials in the field of optical device fabrication, effectively overcoming the challenges posed by conventional materials. In this paper, we explore in detail the complex aspects of the design, synthesis and application related to biomedical silk protein optical devices and comprehensively analyse the potential use of silk protein-centric microstructures (e.g., micropillars, microneedles, and photonic crystals) in the development of optical devices. This review also offers insights into the challenges of applying silk protein optical devices in healthcare and their future trends, aiming to provide a comprehensive overview of the advances, potential impacts and emerging research directions in the field of biomedical silk protein optical devices.
Collapse
Affiliation(s)
- Kaiyi Dong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
3
|
Wang X, Dai X, Wang H, Wang J, Chen Q, Chen F, Yi Q, Tang R, Gao L, Ma L, Wang C, Wang X, He G, Fei Y, Guan Y, Zhang B, Dai Y, Tu X, Zhang L, Zhang L, Zou G. All-Water Etching-Free Electron Beam Lithography for On-Chip Nanomaterials. ACS NANO 2023; 17:4933-4941. [PMID: 36802505 DOI: 10.1021/acsnano.2c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electron beam lithography uses an accelerated electron beam to fabricate patterning on an electron-beam-sensitive resist but requires complex dry etching or lift-off processes to transfer the pattern to the substrate or film on the substrate. In this study, etching-free electron beam lithography is developed to directly write a pattern of various materials in all-water processes, achieving the desired semiconductor nanopatterns on a silicon wafer. Introduced sugars are copolymerized with metal ions-coordinated polyethylenimine under the action of electron beams. The all-water process and thermal treatment result in nanomaterials with satisfactory electronic properties, indicating that diverse on-chip semiconductors (e.g., metal oxides, sulfides, and nitrides) can be directly printed on-chip by an aqueous solution system. As a demonstration, zinc oxide patterns can be achieved with a line width of 18 nm and a mobility of 3.94 cm2 V-1 s-1. This etching-free electron beam lithography strategy provides an efficient alternative for micro/nanofabrication and chip manufacturing.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao Dai
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
- School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jiong Wang
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Qi Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Fengnan Chen
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Qinghua Yi
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Rujun Tang
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Liang Gao
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Liang Ma
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Xiangyi Wang
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Guanglong He
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Fei
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yanqiu Guan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Biao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Dai
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Lijian Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Guifu Zou
- School of Energy, School of Physical Science and Technology, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Wang Z, Yang Z, Jiang J, Shi Z, Mao Y, Qin N, Tao TH. Silk Microneedle Patch Capable of On-Demand Multidrug Delivery to the Brain for Glioblastoma Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106606. [PMID: 34618380 DOI: 10.1002/adma.202106606] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Surgery followed by chemotherapy and radiotherapy remains the standard treatment strategy for GBM patients. However, challenges still exist when surgery is difficult or impossible to remove the tumor completely. Herein, the design, fabrication and application of a heterogenous silk fibroin microneedle (SMN) patch is reported for circumventing the blood-brain barrier and releasing multiple drugs directly to the tumor site for drug combination treatment. The biocompatible and biodegradable SMN patch can dissolve slowly over time, allowing the sustained release of multiple drugs at different doses. Furthermore, it can be triggered remotely to induce rapid drug delivery at a designated stage after implantation. In the GBM mouse models, two clinically relevant chemotherapeutic agents (thrombin and temozolomide) and targeted drug (bevacizumab) are loaded into the SMN patch with individually controlled release profiles. The drugs are spatiotemporally and sequentially delivered for hemostasis, anti-angiogenesis, and apoptosis of tumor cells. Device application is non-toxic and results in decreased tumor volume and increased survival rate in mice. The SMN patch with on-demand multidrug delivery has potential applications for the combined administration of therapeutic drugs for the clinical treatment of brain tumors when other methods are insufficient.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
| | - Zhipeng Yang
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianjuan Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhifeng Shi
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
5
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
6
|
Huang WP, Chen XC, Hu M, Wang J, Qian HL, Hu DF, Dong RL, Xu SY, Ren KF, Ji J. Dynamic Porous Pattern through Controlling Noncovalent Interactions in Polyelectrolyte Film for Sequential and Regional Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42081-42088. [PMID: 32937689 DOI: 10.1021/acsami.0c09580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inspired by nature, many functional surfaces have been developed with special structures in biology, chemistry, and materials. Many research studies have been focused on the preparation of surfaces with static structure. Achieving dynamical manipulation of surface structure is desired but still a great challenge. Herein, a polyelectrolyte film capable of regional and reversible changes in the microporous structure is presented. Our proposal is based on the combination of azobenzene (Azo) π-π stacking and electrostatic interaction, which could be affected respectively by ultraviolet (UV) irradiation and water plasticization, to tune the mobility of polyelectrolyte chains. The porous patterns can be obtained after regional ultraviolet irradiation and acid treatment. Owing to the reversibility of Azo π-π stacking and electrostatic interaction, the patterns can be repeatedly created and erased in the polyelectrolyte film made by layer-by-layer (LbL) self-assembly of poly(ethyleneimine)-azo and poly(acrylic acid). Furthermore, through two rounds of porous pattern formation and erasure, different functional species can be loaded separately and confined regionally within the film, showing potential applications in the functional surface. This work highlights the coordination of two noncovalent interactions in thin films for regional and reversible controlling its structure, opening a window for more in-depth development of functional surfaces.
Collapse
Affiliation(s)
- Wei-Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xia-Chao Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deng-Feng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui-Lin Dong
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Song-Yi Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Sun L, Zhou Z, Zhong J, Shi Z, Mao Y, Li H, Cao J, Tao TH. Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000294. [PMID: 32162840 DOI: 10.1002/smll.202000294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Metamaterial (MM) sensors and devices, usually consisting of artificially structured composite materials with engineered responses that are mainly determined by the unit structure rather than the bulk properties or composition, offer new functionalities not readily available in nature. A set of implantable and resorbable therapeutic MM devices at terahertz (THz) frequencies are designed and fabricated by patterning magnesium split ring resonators on drug-loaded silk protein substrates with controllable device degradation and drug release rates. To demonstrate proof-of-concept, a set of silk-based, antibiotics-loaded MM devices, which can serve as degradable antibacterial skin patches with capabilities to monitor drug-release in real time are fabricated. The extent of drug release, which correlates with the degradation of the MM skin patch, can be monitored by analyzing the resonant responses in reflection during degradation using a portable THz camera. Animal experiments are performed to demonstrate the in vivo degradation process and the efficacy of the devices for antibacterial treatment. Thus, the implantable and resorbable therapeutic MM devices do not need to be retrieved once implanted, providing an appealing alternative for in-vivo sensing and in situ treatment applications.
Collapse
Affiliation(s)
- Long Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Hua Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Juncheng Cao
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| |
Collapse
|
8
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|