1
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Chai B, Zhang W, Liu Y, Zhu S, Gu Z, Zhang H. Progress in Research and Application of Graphene Aerogel-A Bibliometric Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 16:272. [PMID: 36614611 PMCID: PMC9822319 DOI: 10.3390/ma16010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In recent years, graphene aerogel (GA) has been widely used as a 3D porous stable network structure material. In order to identify the main research direction of GA, we use the bibliometric method to analyze its hot research fields and applications from the Web of Science database. First, we collected all relevant literature and analyzed its bibliometrics of publication year, country, institution, etc., where we found that China and Chinese Academy of Sciences are the most productive country and institute, respectively. Then, the three hot fields of fabrication, energy storage, and environmental protection are identified and thoroughly discussed. Graphene aerogel composite electrodes have achieved very efficient storage capacity and charge/discharge stability, especially in the field of electrochemical energy storage. Finally, the current challenges and the future development trends are presented in the conclusion. This paper provides a new perspective to explore and promote the related development of GA.
Collapse
Affiliation(s)
- Bowen Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Wanlin Zhang
- Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China
| | - Yuanyuan Liu
- Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China
| |
Collapse
|
3
|
Xie Y, Yang L, Wang G, Luo X, Hao H, Wang M, Wang Z, Chen J, Lou F, Xie Q, Wang G. Flexible Three-Dimensional Hierarchical Porous Multifunctional Electrodes for Enhanced Performance by Electrodepositing Perovskite CeFeO 3 on Carbon Foam. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuting Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liangxuan Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejia Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fanghui Lou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingshan Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Fu C, Sheng Z, Zhang X. Laminated Structural Engineering Strategy toward Carbon Nanotube-Based Aerogel Films. ACS NANO 2022; 16:9378-9388. [PMID: 35587451 PMCID: PMC9245345 DOI: 10.1021/acsnano.2c02193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 05/25/2023]
Abstract
Aerogel films with a low density are ideal candidates to meet lightweight application and have already been used in a myriad of fields; however, their structural design for performance enhancement remains elusive. Herein, we put forward a laminated structural engineering strategy to prepare a free-standing carbon nanotube (CNT)-based aerogel film with a densified laminated porous structure. By directional densification and carbonization, the three-dimensional network of one-dimensional nanostructures in the aramid nanofiber/carbon nanotube (ANF/CNT) hybrid aerogel film can be reconstructed to a laminated porous structure with preferential orientation and consecutively conductive pathways, resulting in a large specific surface area (341.9 m2/g) and high electrical conductivity (8540 S/m). Benefiting from the laminated porous structure and high electrical conductivity, the absolute specific shielding effectiveness (SSE/t) of a CNT-based aerogel film can reach 200647.9 dB cm2/g, which shows the highest value among the reported aerogel-based materials. The laminated CNT-based aerogel films with an adjustable wetting property also exhibit exceptional Joule heating performance. This work provides a structural engineering strategy for aerogel films with enhanced electric conductivity for lightweight applications, such as EMI shielding and wearable heating.
Collapse
Affiliation(s)
- Chen Fu
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhizhi Sheng
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xuetong Zhang
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- Division
of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
5
|
Jiang Z, Li A, Meng C, Chen X, Song H. Strategies and challenges of carbon materials in the practical applications of lithium metal anode: a review. Phys Chem Chem Phys 2022; 24:26356-26370. [DOI: 10.1039/d2cp04032h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lithium (Li) metal is strongly considered to be the ultimate anode for next-generation high-energy-density rechargeable batteries. Carbon materials and their composites with excellent structure tunability and properties have shown great potential applications in Li metal anodes.
Collapse
Affiliation(s)
- Zipeng Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Qinghai Provincial Key Laboratory of Advanced Materials and Applied Technology, Qinghai University, Xining, 810016, P. R. China
| | - Ang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenyang Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huaihe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Abstract
Rechargeable lithium-metal batteries (LMBs), which have high power and energy density, are very attractive to solve the intermittence problem of the energy supplied either by wind mills or solar plants or to power electric vehicles. However, two failure modes limit the commercial use of LMBs, i.e., dendrite growth at the surface of Li metal and side reactions with the electrolyte. Substantial research is being accomplished to mitigate these drawbacks. This article reviews the different strategies for fabricating safe LMBs, aiming to outperform lithium-ion batteries (LIBs). They include modification of the electrolyte (salt and solvents) to obtain a highly conductive solid–electrolyte interphase (SEI) layer, protection of the Li anode by in situ and ex situ coatings, use of three-dimensional porous skeletons, and anchoring Li on 3D current collectors.
Collapse
|
7
|
Yi S, Hong D, Su Z, Tian L, Zhang W, Chen M, Hu M, Niu B, Zhang Y, Long D. In Situ Formed Lithiophilic Li xNb yO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56498-56509. [PMID: 34784166 DOI: 10.1021/acsami.1c17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium metal is considered as a strongly attractive anode candidate for the high-energy-storage field, but its dreadful dendrite growth has haunted its commercialization progress. Herein, we develop a lithiophilic Nb2O5-embedded three-dimensional (3D) carbon nanofiber network (Nb2O5-CNF) as a scaffold to preload molten Li for the fabrication of dendrite-free composite anode. The in situ lithiation reaction between molten Li and Nb2O5 nanocrystals results in the formation of nanosize LixNbyO nanoparticles, which can serve as preferred sites that regulate nucleation/growth behavior of Li during the plating process. Besides, due to its high structural stability and abundant internal inner space, the 3D CNF network can function as a reservoir to confine the dimensional expansion of "hostless Li". The resulting Li composite anodes exhibit enlarged active areas and reduced interfacial energy barriers, delivering a prolonged cycling of 1000 h with an ultralow hysteresis of 52 mV and dendrite-free morphology in a symmetric cell (1.0 mA cm-2). Coupled with the LiFePO4 cathode, the Li@Nb2O5-CNF anode sustains a reversible capacity of 163 mAh g-1 with an excellent capacity retention of 93.0% after 370 cycles at 0.5C. This all-around strategy of lithiophilic sites coupled with a 3D conductive nanofiber matrix may shed light on promising applications of high-capacity and dendrite-free Li-metal batteries.
Collapse
Affiliation(s)
- Shan Yi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Donghui Hong
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Zhe Su
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Liying Tian
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Wanyu Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Mingqi Chen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Mengfei Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Bo Niu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Yayun Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
| | - Donghui Long
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Lu G, Dong Z, Liu W, Jiang X, Yang Z, Liu Q, Yang X, Wu D, Li Z, Zhao Q, Hu X, Xu C, Pan F. Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Sci Bull (Beijing) 2021; 66:1746-1753. [PMID: 36654382 DOI: 10.1016/j.scib.2021.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 01/20/2023]
Abstract
Solid-state lithium-metal batteries (SSLMBs) using garnet Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as the solid electrolyte are expected to conquer the safety concerns of high energy Li batteries with organic liquid electrolytes owing to its nonflammable nature and good mechanical strength. However, the poor interfacial contact between the Li anode and LLZTO greatly restrains the practical applications of the electrolyte, because large polarization, dendritic Li formation and penetration can occur at the interfaces. Here, an effective method is proposed to improve the wettability of the LLZTO toward lithium and reduce the interfacial resistance by engineering universal lithiophilic interfacial layers. Thanks to the in-situ formed lithiophilic and ionic conductive Co/Li2O interlayers, the symmetric Li/CoO-LLZTO/Li batteries present much smaller overpotential, ultra-low areal specific resistance (ASR, 12.3 Ω cm2), high critical current density (CCD, 1.1 mA cm-2), and outstanding cycling performance (1696 h at a current density of 0.3 mA cm-2) at 25 °C. Besides, the solid-state Li/CoO-LLZTO/LFP cells deliver an excellent electrochemical performance with a high coulombic efficiency of ~100% and a long cycling time over 185 times. Surprisingly, the high-voltage (4.6 V) solid state Li/CoO-LLZTO/Li1.4Mn0.6Ni0.2Co0.2O2.4 (LMNC622) batteries can also realize an ultra-high specific capacity (232.5 mAh g-1) under 0.1 C at 25 °C. This work paves an effective way for practical applications of the dendrite-free SSLMBs.
Collapse
Affiliation(s)
- Guanjie Lu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Zhencai Dong
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Liu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoping Jiang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Zuguang Yang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Qiwen Liu
- Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiukang Yang
- Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dan Wu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Zongyang Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Qiannan Zhao
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaolin Hu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Chaohe Xu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China; National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China.
| | - Fusheng Pan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Park S, Jin HJ, Yun YS. Advances in the Design of 3D-Structured Electrode Materials for Lithium-Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002193. [PMID: 32970326 DOI: 10.1002/adma.202002193] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Although the lithium-metal anode (LMA) can deliver a high theoretical capacity of ≈3860 mAh g-1 at a low redox potential of -3.040 V (vs the standard hydrogen electrode), its application in rechargeable batteries is hindered by the poor Coulombic efficiency and safety issues caused by dendritic metal growth. Consequently, careful electrode design, electrolyte engineering, solid-electrolyte interface control, protective layer introduction, and other strategies are suggested as possible solutions. In particular, one should note the great potential of 3D-structured electrode materials, which feature high active specific surface areas and stereoscopic structures with multitudinous lithiophilic sites and can therefore facilitate rapid Li-ion flux and metal nucleation as well as mitigate Li dendrite formation through the kinetic control of metal deposition even at high local current densities. This progress report reviews the design of 3D-structured electrode materials for LMA according to their categories, namely 1) metal-based materials, 2) carbon-based materials, and 3) their hybrids, and allows the results obtained under different experimental conditions to be seen at a single glance, thus being helpful for researchers working in related fields.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Polymer Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Hyoung-Joon Jin
- Department of Polymer Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Young Soo Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
10
|
Cui L, Huan Y, Shan J, Liu B, Liu J, Xie H, Zhou F, Gao P, Zhang Y, Liu Z. Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications. ACS NANO 2020; 14:15327-15335. [PMID: 33180469 DOI: 10.1021/acsnano.0c05662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The direct growth of vertically oriented graphene (VG) on low-priced, easily accessible soda-lime glass can propel its applications in transparent electrodes and energy-relevant areas. However, graphene deposited at low temperature (∼600 °C) on the catalysis-free insulating substrates usually presents high defect density, poor crystalline quality, and unsatisfactory electrical conductivity. To tackle this issue, we select high borosilicate glass as the growth substrate (softening point ∼850 °C), which can resist higher growth temperature and thus afford higher graphene crystalline quality, by using a radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) route. A nitrogen doping strategy is also combined to tailor the carrier concentration through a methane/acetonitrile-precursor-based synthetic strategy. The sheet resistance of as-grown nitrogen-doped (N-doped) VG films on high borosilicate glass can thus be lowered down to ∼2.3 kΩ·sq-1 at a transmittance of 88%, less than half of the methane-precursor-based PECVD product. Significantly, this synthetic route allows the achievement of 30-inch-scale uniform N-doped graphene glass, thus promoting its applications as excellent electrodes in high-performance switchable windows. Additionally, such N-doped VG films were also employed as efficient electrocatalysts for electrocatalytic hydrogen evolution reaction.
Collapse
Affiliation(s)
- Lingzhi Cui
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute, Beijing 100091, People's Republic of China
| | - Yahuan Huan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Junjie Shan
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute, Beijing 100091, People's Republic of China
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Junling Liu
- Beijing Graphene Institute, Beijing 100091, People's Republic of China
| | - Huanhuan Xie
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Fan Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute, Beijing 100091, People's Republic of China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute, Beijing 100091, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, People's Republic of China
| |
Collapse
|
11
|
Xiao J, Xiao N, Liu C, Li H, Pan X, Zhang X, Bai J, Guo Z, Ma X, Qiu J. In Situ Growing Chromium Oxynitride Nanoparticles on Carbon Nanofibers to Stabilize Lithium Deposition for Lithium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003827. [PMID: 33090689 DOI: 10.1002/smll.202003827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
To address the dendrite growth and interface instability of high-capacity Li metal anode, heterogeneous seed-decorated 3D host materials are expected to suppress the growth of Li dendrites. The physical stability and chemical reactivity of these nanoseeds are the decisive conditions for long cycling lithium metal batteries. Herein, carbon nanofibers decorated with uniform CrO0.78N0.48 nanoparticles (ACrCFs) are synthesized by a novel in situ growing method, where the size, composition, distribution, and migration behavior of these nanoparticles are controlled by the introduction of asphaltene. As the 3D host materials for Li anodes, ACrCFs exhibit an excellent lithiophilicity, a superior mixed ion-electron conductivity, and abundant electrochemical active sites. Thus, the ACrCF-modified Li anodes deliver a smooth Li morphology, low nucleation overpotential (10.4 mV), superior cyclic stability with 320 stable cycles (Coulombic efficiency, >98.0%) at 1 mA cm-2, and excellent plating/stripping stability over 1000 h. Notably, no obvious detachment or chalking of these nanoparticles occur during the cycling process. The full cell with LiFePO4 cathode also delivers a better rate capability with more stable cycling performance. The homogeneous CrO0.78N0.48 nanoparticles achieved by this in situ growing method also promise a facile method for the potential applications of transition-metal oxynitride for high energy density battery systems.
Collapse
Affiliation(s)
- Jian Xiao
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Xiao
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Chang Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongqiang Li
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xin Pan
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaoyu Zhang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jinpeng Bai
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zhen Guo
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaoqing Ma
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Shen L, Shi P, Hao X, Zhao Q, Ma J, He YB, Kang F. Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000699. [PMID: 32459890 DOI: 10.1002/smll.202000699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (-3.04 V) and high specific capacity (3860 mAh g-1 ). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid-state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.
Collapse
Affiliation(s)
- Lu Shen
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Peiran Shi
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoge Hao
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhao
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiabin Ma
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Bing He
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Feiyu Kang
- Shenzhen Geim Graphene, Center Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Advances in Manufacturing Composite Carbon Nanofiber-Based Aerogels. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article provides an overview on manufacturing composite carbon nanofiber-based aerogels through freeze casting technology. As known, freeze casting is a relatively new manufacturing technique for generating highly porous structures. During the process, deep cooling is used first to rapidly solidify a well-dispersed slurry. Then, vacuum drying is conducted to sublimate the solvent. This allows the creation of highly porous materials. Although the freeze casting technique was initially developed for porous ceramics processing, it has found various applications, especially for making aerogels. Aerogels are highly porous materials with extremely high volume of free spaces, which contributes to the characteristics of high porosity, ultralight, large specific surface area, huge interface area, and in addition, super low thermal conductivity. Recently, carbon nanofiber aerogels have been studied to achieve exceptional properties of high stiffness, flame-retardant and thermal-insulating. The freeze casting technology has been reported for preparing carbon nanofiber composite aerogels for energy storage, energy conversion, water purification, catalysis, fire prevention etc. This review deals with freeze casting carbon nanofiber composite materials consisting of functional nanoparticles with exceptional properties. The content of this review article is organized as follows. The first part will introduce the general freeze casting manufacturing technology of aerogels with the emphasis on how to use the technology to make nanoparticle-containing composite carbon nanofiber aerogels. Then, modeling and characterization of the freeze cast particle-containing carbon nanofibers will be presented with an emphasis on modeling the thermal conductivity and electrical conductivity of the carbon nanofiber network aerogels. After that, the applications of the carbon nanofiber aerogels will be described. Examples of energy converters, supercapacitors, secondary battery electrodes, dye absorbents, sensors, and catalysts made from composite carbon nanofiber aerogels will be shown. Finally, the perspectives to future work will be presented.
Collapse
|
14
|
Hu P, Lyu J, Fu C, Gong WB, Liao J, Lu W, Chen Y, Zhang X. Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS NANO 2020; 14:688-697. [PMID: 31851483 DOI: 10.1021/acsnano.9b07459] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lightweight, robust, and thin aerogel films with multifunctionality are highly desirable to meet the technological demands of current society. However, fabrication and application of these multifunctional aerogel films are still significantly underdeveloped. Herein, we demonstrate a multifunctional aerogel film composed of strong aramid nanofibers (ANFs), conductive carbon nanotubes (CNTs), and hydrophobic fluorocarbon (FC) resin. The obtained hybrid aerogel film exhibits large specific surface area (232.8 m2·g-1), high electrical conductivity (230 S·m-1), and excellent hydrophobicity (contact angle of up to 137.0°) with exceptional Joule heating performance and supreme electromagnetic interference (EMI) shielding efficiency. The FC coating renders the hydrophilic ANF/CNT aerogel films hydrophobic, resulting in an excellent self-cleaning performance. The high electrical conductivity enables a low-voltage-driven Joule heating property and an EMI shielding effectiveness (SE) of 54.4 dB in the X-band at a thickness of 568 μm. The specific EMI SE is up to 33528.3 dB·cm2·g-1, which is among the highest values of typical metal-, conducting-polymer-, or carbon-based composites. This multifunctional aerogel film holds great promise for smart garments, electromagnetic wave shielding, and personal thermal management systems.
Collapse
Affiliation(s)
- Peiying Hu
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Chen Fu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Wen-Bin Gong
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Jianhe Liao
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
| | - Weibang Lu
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
| | - Yongping Chen
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering , Hainan University , 58 Renmin Avenue , Haikou 570228 , P.R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , P.R. China
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science , University College London , London NW3 2PF , United Kingdom
| |
Collapse
|
15
|
Fujigaya T, Kanamori R, Hirata S, Morita J, Matsumoto M, Eguchi M, Jang IC, Ishihara T, Nakashima N. Effect of nitrogen-containing polymer wrapped around carbon nanotubes for Li–O2 battery cathode. Polym J 2019. [DOI: 10.1038/s41428-019-0207-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|