1
|
Du Y, Wang Y, Shamraienko V, Pöschel K, Synytska A. Donor:Acceptor Janus Nanoparticle-Based Films as Photoactive Layers: Control of Assembly and Impact on Performance of Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206907. [PMID: 37010023 DOI: 10.1002/smll.202206907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Water-processable organic semiconductor nanoparticles (NPs) are considered promising materials for the next-generation of optoelectronic applications due to their controlled size, internal structure, and environmentally friendly processing. Reasonably, the controllable assembly of donor:acceptor (D:A) NPs on large areas, quality, and packing density of deposited films, as well as layer morphology, will influence the effectiveness of charge transfer at an interface and the final performance of designed optoelectronic devices.This work represents an easy and effective approach for designing self-assembled monolayers of D:A NPs. In this self-assembly procedure, the NP arrays are prepared on a large scale (2 × 2 cm2 ) at the air/water interface with controlled packing density and morphology. Due to the unique structure of individual D:A Janus particles and their assembled arrays, the Janus nanoparticle (JNP)-based device exhibits an 80% improvement of electron mobility and more balanced charge extraction compared to the conventional core-shell NP-based device. An outstanding performance of polymer solar cells with over 5% efficiency is achieved after post-annealing treatment of assembled arrays, representing one of the best results for NP-based organic photovoltaics. Ultimately, this work provides a new protocol for processing water-processable organic semiconductor colloids and future optoelectronic fabrication.
Collapse
Affiliation(s)
- Yixuan Du
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
- Bayerisches Polymerinstitut, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Yuemeng Wang
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Volodymyr Shamraienko
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kathrin Pöschel
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Alla Synytska
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
- Bayerisches Polymerinstitut, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
2
|
Globular Aggregates Stemming from the Self-Assembly of an Amphiphilic N-Annulated Perylene Bisimide in Aqueous Media. NANOMATERIALS 2021; 11:nano11061457. [PMID: 34072824 PMCID: PMC8228590 DOI: 10.3390/nano11061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Herein, we describe the synthesis of highly emissive amphiphilic N-annulated PBI 1 decorated with oligo ethylene glycol (OEG) side chains. These polar side chains allow the straightforward solubility of 1 in solvents of different polarity such as water, iPrOH, dioxane, or chloroform. Compound 1 self-assembles in aqueous media by π-stacking of the aromatic units and van der Waals interactions, favored by the hydrophobic effect. The hypo- and hypsochromic effect observed in the UV-Vis spectra of 1 in water in comparison to chloroform is diagnostic of H-type aggregation. Solvent denaturation experiments allow deriving the free Gibbs energy for the self-assembly process in aqueous media and the factor m that is indicative of the influence exerted by a good solvent in the stability of the final aggregates. The ability of compound 1 to self-assemble in water yields globular aggregates that have been visualized by TEM imaging.
Collapse
|
3
|
Kim YJ, Guo P, Schaller RD. Aqueous Carbon Quantum Dot-Embedded PC60-PC 61BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies. J Phys Chem Lett 2019; 10:6525-6535. [PMID: 31596102 DOI: 10.1021/acs.jpclett.9b02426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To go beyond the PC60 surfactant structure, the double-layer micelle morphology in water motivates exploration of altered protocols to produce new morphologies. Furthermore, the low photoluminescence quantum yield of aqueous fullerene-based particles encourages high fluorescence to create a light-emitting display. With this in mind, we established new hybrid n-type nanospheres with carbon quantum dot (CQD)-embedded PC60-PC61BM particles, processed using two different protocols. The homogenizer-assisted PC60-CQD-PC61BM resulted in a watermelon-shaped spherical particle, whereas a circular morphology with randomly embedded CQDs was observed in the microwave-treated hybrids. More surprisingly, the watermelon-shaped colloid induced efficient fluorescence resonance energy transfer (FRET) between the CQD and C60 molecules of PC61BM, and the FRET-mediated emission signature diminished gradually as the stripe patterns collapsed. This phenomenon allowed different fluorescent colors in the colloidal printing film. We thereby provided the new carrier dynamics of the particle photonic activities of the developed aqueous PC60-based colloids with the possibility of ecological utilization.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Peijun Guo
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
4
|
Kim YJ, Loeffler TD, Chen Z, Sankaranarayanan SKRS. Promoting Noncovalent Intermolecular Interactions Using a C 60 Core Particle in Aqueous PC60s-Covered Colloids for Ultraefficient Photoinduced Particle Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38798-38807. [PMID: 31558014 DOI: 10.1021/acsami.9b14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Noncovalent intermolecular interactions in nanomaterials, such as van der Waals effects, allow adjustment of the nanoscopic size of compounds and their conformation in molecular crystal regimes. These strong interactions permit small particle sizes to be maintained as the crystals grow. In particular, these effects can be leveraged in the confined/reinforcing phase of molecules. With this in mind, we used C60 molecules as a core particle in single-PC60 surfactant-covered colloid in a water-processable system. Compared with our previous results based on a PC61BM core-PC60 shell particle, the PC60-C60 colloid had a considerably smaller spherical structure due to the increased intermolecular interactions between C60 (fullerene) molecules. Interestingly, the conformation of C60 aggregates was altered depending on the mixed solvents and their volume fraction in the organic phase, which strongly affected the structural properties of the PC60-C60 colloids. The particle facilitated strong interactions with a p-type core sphere when it was introduced as the shell part of a p-n heterojunction particle. This direct interaction provided effective electronic communication between p- and n-type particles, resulting in ultraefficient photonic properties, particularly in charge separation in aqueous heterostructured colloids. This enabled the development of an extremely efficient photovoltaic device with a 6.74% efficiency, which could provide the basis for creating high-performance water-processable solar cells based on p-n heterostructured NPs.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Troy D Loeffler
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Zhaowei Chen
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | | |
Collapse
|