1
|
Han D, Vidic J, Jiang D, Loget G, Sojic N. Photoinduced Electrochemiluminescence Immunoassays. Anal Chem 2024; 96:18262-18268. [PMID: 39484746 DOI: 10.1021/acs.analchem.4c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Optimization of electrochemiluminescence (ECL) immunoassays is highly beneficial for enhancing clinical diagnostics. A major challenge is the improvement of the operation conditions required for the bead-based immunoassays using the typical [Ru(bpy)3]2+/tri-n-propylamine (TPrA) system. In this study, we report a heterogeneous immunoassay based on near-infrared photoinduced ECL, which facilitates the imaging and quantitative analysis of [Ru(bpy)3]2+-modified immunobeads at low anodic potential. The photovoltage generated by the photoanode under near-infrared light promotes oxidation processes at the electrode/electrolyte interface, thus considerably lowering the onset potential for both TPrA oxidation and ECL emission. The anti-Stokes shift between the excitation light (invisible to the human eyes) and the visible emitted light results in a clear and stable signal from the immunobeads. In addition, it offers the possibility of site-selective photoexcitation of the ECL process. This approach not only meets the performance of traditional ECL immunoassays in accuracy but also offers the additional benefits of lower potential requirements and enhanced stability, providing a new perspective for the optimization of commercial immunoassays.
Collapse
Affiliation(s)
- Dongni Han
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, ENSMAC, Pessac 33607, France
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, UMR 1319, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Gabriel Loget
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, ENSMAC, Pessac 33607, France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, ENSMAC, Pessac 33607, France
| |
Collapse
|
2
|
Roth S, Ferrante T, Walt DR. Efficient discovery of antibody binding pairs using a photobleaching strategy for bead encoding. LAB ON A CHIP 2024; 24:4060-4072. [PMID: 39081159 DOI: 10.1039/d4lc00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Dye-encoded bead-based assays are widely used for diagnostics. Multiple bead populations are required for multiplexing and can be produced using different dye colors, labeling levels, or combinations of dye ratios. Ready-to-use multiplex bead populations restrict users to specific targets, are costly, or require specialized instrumentation. In-house methods produce few bead plexes or require many fine-tuning steps. To expand bead encoding strategies, we present a simple, safe, and cost-effective bench-top system for generating bead populations using photobleaching. By photobleaching commercially available dye-encoded magnetic beads for different durations, we produce three times as many differentiable bead populations on flow cytometry from a single dye color. Our photobleaching system uses a high-power LED module connected to a light concentrator and a heat sink. The beads are photobleached in solution homogeneously by constant mixing. We demonstrate this photobleaching method can be utilized for cross-testing antibodies, which is the first step in developing immunoassays. The assay uses multiple photobleached encoded beads conjugated with capture antibodies to test many binding pairs simultaneously. To further expand the number of antibodies that can be tested at once, several antibodies were conjugated to the same bead, forming a pooled assay. Our assay predicts the performance of antibody pairs used in ultrasensitive Simoa assays, narrowing the number of cross-tested pairs that need to be tested by at least two-thirds and, therefore, providing a rapid alternative for an initial antibody pair screening. The photobleaching system can be utilized for other applications, such as multiplexing, and for photobleaching other particles in solution.
Collapse
Affiliation(s)
- Shira Roth
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA
| | - Tom Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David R Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Maniya NH, Kumar S, Franklin JL, Higginbotham JN, Scott AM, Gan HK, Coffey RJ, Senapati S, Chang HC. An anion exchange membrane sensor detects EGFR and its activity state in plasma CD63 extracellular vesicles from patients with glioblastoma. Commun Biol 2024; 7:677. [PMID: 38830977 PMCID: PMC11148014 DOI: 10.1038/s42003-024-06385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
We present a quantitative sandwich immunoassay for CD63 Extracellular Vesicles (EVs) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane functionalized with capture antibodies and a charged silica nanoparticle reporter functionalized with detection antibodies. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins, thus enabling direct plasma analysis without the need for EV isolation or sensor blocking. With a LOD of 30 EVs/μL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. We analysed untreated clinical samples of Glioblastoma to demonstrate this new platform. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.
Collapse
Affiliation(s)
- Nalin H Maniya
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Kremer R, Roth S, Bross A, Danielli A, Noam Y. Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays. BIOSENSORS 2024; 14:220. [PMID: 38785694 PMCID: PMC11117981 DOI: 10.3390/bios14050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.
Collapse
|
5
|
Maniya NH, Kumar S, Franklin JL, Higginbotham JN, Scott AM, Gan HK, Coffey RJ, Senapati S, Chang HC. Detection of EGFR and its Activity State in Plasma CD63-EVs from Glioblastoma Patients: Rapid Profiling using an Anion Exchange Membrane Sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562628. [PMID: 37905113 PMCID: PMC10614888 DOI: 10.1101/2023.10.16.562628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We present a novel quantitative immunoassay for CD63 EVs (extracellular vesicles) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane and a charged silica nanoparticle reporter. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins and fluorophore degradation, thus enabling direct plasma analysis. With a limit of detection of 30 EVs/μL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. Glioblastoma necessitates improved non-invasive diagnostic approaches for early detection and monitoring. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. This approach offers direct glioblastoma detection from untreated human patient samples. Analysis of glioblastoma clinical samples yielded an area-under-the-curve (AUC) value of 0.99 and low p-value of 0.000033, significantly surpassing the performance of existing assays and markers.
Collapse
|
6
|
Meeseepong M, Ghosh G, Shrivastava S, Lee NE. Fluorescence-Enhanced Microfluidic Biosensor Platform Based on Magnetic Beads with Highly Stable ZnO Nanorods for Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21754-21765. [PMID: 37104719 DOI: 10.1021/acsami.2c22352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Existing affinity-based fluorescence biosensing systems for monitoring of biomarkers often utilize a fixed solid substrate immobilized with capture probes limiting their use in continuous or intermittent biomarker detection. Furthermore, there have been challenges of integrating fluorescence biosensors with a microfluidic chip and low-cost fluorescence detector. Herein, we demonstrated a highly efficient and movable fluorescence-enhanced affinity-based fluorescence biosensing platform that can overcome the current limitations by combining fluorescence enhancement and digital imaging. Fluorescence-enhanced movable magnetic beads (MBs) decorated with zinc oxide nanorods (MB-ZnO NRs) were used for digital fluorescence-imaging-based aptasensing of biomolecules with improved signal-to-noise ratio. High stability and homogeneous dispersion of photostable MB-ZnO NRs were obtained by grafting bilayered silanes onto the ZnO NRs. The ZnO NRs formed on MB significantly improved the fluorescence signal up to 2.35 times compared to the MB without ZnO NRs. Moreover, the integration of a microfluidic device for flow-based biosensing enabled continuous measurements of biomarkers in an electrolytic environment. The results showed that highly stable fluorescence-enhanced MB-ZnO NRs integrated with a microfluidic platform have significant potential for diagnostics, biological assays, and continuous or intermittent biomonitoring.
Collapse
Affiliation(s)
- Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Gargi Ghosh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Sajal Shrivastava
- Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International University, Pune 412115, India
| | - Nae-Eung Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
7
|
Makhneva E, Sklenárová D, Brandmeier JC, Hlaváček A, Gorris HH, Skládal P, Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal Chem 2022; 94:16376-16383. [DOI: 10.1021/acs.analchem.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dorota Sklenárová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Julian C. Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967, 602 00 Brno, Czech Republic
| | - Hans H. Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC MU, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Yang EJ, Pon LA. Enrichment of aging yeast cells and budding polarity assay in Saccharomyces cerevisiae. STAR Protoc 2022; 3:101599. [PMID: 35928001 PMCID: PMC9344026 DOI: 10.1016/j.xpro.2022.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Replicative lifespan, a measure of the number of times that a yeast cell can divide before senescence, is one model for aging. Here, we provide a protocol for enrichment of yeast as a function of replicative age using a miniature chemostat aging device (mCAD). This protocol allows for isolation of quantities of cells that are sufficient for biochemical or genomic analysis. We also describe an approach to assess bud site selection, a marker for cell polarity, during the aging process. For complete details on the use and execution of this protocol, please refer to Yang et al. (2022). Step-by-step protocol to assemble a mini-chemostat aging device (mCAD) Protocol to use the mCAD to isolate yeast as a function of replicative age Characterization of basic aging phenotypes of cells isolated using the mCAD Protocol to analyze budding polarity in young and old yeast cells
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
9
|
Roth S, Margulis M, Danielli A. Recent Advances in Rapid and Highly Sensitive Detection of Proteins and Specific DNA Sequences Using a Magnetic Modulation Biosensing System. SENSORS (BASEL, SWITZERLAND) 2022; 22:4497. [PMID: 35746278 PMCID: PMC9230956 DOI: 10.3390/s22124497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules. A controlled magnetic force aggregates the magnetic beads and transports them in and out of an excitation laser beam, generating a periodic fluorescent signal that is detected and demodulated. MMB applications include rapid and highly sensitive detection of specific nucleic acid sequences, antibodies, proteins, and protein interactions. Compared with other established analytical methodologies, MMB provides improved sensitivity, shorter processing time, and simpler protocols.
Collapse
|
10
|
Roth S, Ideses D, Juven-Gershon T, Danielli A. Rapid Biosensing Method for Detecting Protein-DNA Interactions. ACS Sens 2022; 7:60-70. [PMID: 34979074 DOI: 10.1021/acssensors.1c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying and investigating protein-DNA interactions, which play significant roles in many biological processes, is essential for basic and clinical research. Current techniques for identification of protein-DNA interactions are laborious, time-consuming, and suffer from nonspecific binding and limited sensitivity. To overcome these challenges and assess protein-DNA interactions, we use a magnetic modulation biosensing (MMB) system. In MMB, one of the interacting elements (protein or DNA) is immobilized to magnetic beads, and the other is coupled to a fluorescent molecule. Thus, the link between the magnetic bead and the fluorescent molecule is established only when binding occurs, enabling detection of the protein-DNA interaction. Using magnetic forces, the beads are concentrated and manipulated in a periodic motion in and out of a laser beam, producing a detectable oscillating signal. Using MMB, we detected protein-DNA interactions between short GC-rich DNA sequences and both a purified specificity protein 1 (Sp1) and an overexpressed Buttonhead (BTD) protein in a cell lysate. The specificity of the interactions was assessed using mutated DNA sequences and competition experiments. The assays were experimentally compared with commonly used electrophoretic mobility shift assay, which takes approximately 4-72 h. In comparison, the MMB-based assay's turnaround time is ∼2 h, and it provides unambiguous results and quantitative measures of performance. The MMB system uses simple and cheap components, making it an attractive alternative method over current costly and time-consuming techniques for analyzing protein-DNA interactions. Therefore, we anticipate that the MMB-based technique will significantly advance the detection of protein-DNA interactions in biomedical research.
Collapse
Affiliation(s)
- Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| |
Collapse
|
11
|
Jang AS, Praveen Kumar PP, Lim DK. Attomolar Sensitive Magnetic Microparticles and a Surface-Enhanced Raman Scattering-Based Assay for Detecting SARS-CoV-2 Nucleic Acid Targets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:138-149. [PMID: 34914369 PMCID: PMC8691452 DOI: 10.1021/acsami.1c17028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/05/2021] [Indexed: 05/09/2023]
Abstract
Highly sensitive, reliable assays with strong multiplexing capability for detecting nucleic acid targets are significantly important for diagnosing various diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The nanomaterial-based assay platforms suffer from several critical issues such as non-specific binding and highly false-positive results. In this paper, to overcome such limitations, we reported sensitive and remarkably reproducible magnetic microparticles (MMPs) and a surface-enhanced Raman scattering (SERS)-based assay using stable silver nanoparticle clusters for detecting viral nucleic acids. The MMP-SERS-based assay exhibited a sensitivity of 1.0 fM, which is superior to the MMP-fluorescence-based assay. In addition, in the presence of anisotropic Ag nanostructures (nanostars and triangular nanoplates), the assay exhibited greatly enhanced sensitivity (10 aM) and excellent signal reproducibility. This assay platform intrinsically eliminated the non-specific binding that occurs in the target detection step, and the controlled formation of stable silver nanoparticle clusters in solution enabled the remarkable reproducibility of the results. These findings indicate that this assay can be employed for future practical bioanalytical applications.
Collapse
Affiliation(s)
- Ah Seong Jang
- KU-KIST Graduate School of Converging Science and
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul
02841, Republic of Korea
| | | | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul
02841, Republic of Korea
- Department of Integrative Energy Engineering, College
of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu,
Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Margulis M, Erster O, Roth S, Mandelboim M, Danielli A. A Magnetic Modulation Biosensing-Based Molecular Assay for Rapid and Highly Sensitive Clinical Diagnosis of Coronavirus Disease 2019 (COVID-19). J Mol Diagn 2021; 23:1680-1690. [PMID: 34600139 PMCID: PMC8481636 DOI: 10.1016/j.jmoldx.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 08/27/2021] [Indexed: 10/25/2022] Open
Abstract
Rapid and sensitive detection of human pathogens, such as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is an urgent and challenging task for clinical laboratories. Currently, the gold standard for SARS-CoV-2-specific RNA is based on quantitative RT-PCR (RT-qPCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer-based hydrolysis probe. Although this method is accurate and specific, it is also time consuming. Here, a new molecular assay is described that combines a highly sensitive magnetic modulation biosensing (MMB) system, rapid thermal cycling, and a modified double-quenched hydrolysis probe. In vitro transcribed SARS-CoV-2 RNA targets spiked in PCR-grade water, were used to show that the calculated limit of detection of the MMB-based molecular assay was 1.6 copies per reaction. Testing 309 RNA extracts from 170 confirmed RT-qPCR SARS-CoV-2-negative individuals (30 of whom were positive for other respiratory viruses) and 139 RT-qPCR SARS-CoV-2-positive patients (CT ≤ 42) resulted in 97.8% sensitivity, 100% specificity, and 0% cross-reactivity. The total turnaround time of the MMB-based assay is 30 minutes, which is three to four times faster than a standard RT-qPCR. By adjusting the primers and the probe set, the platform can be easily adapted to detect most of the pathogens that are currently being diagnosed by RT-qPCR.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel.
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
13
|
Liu L, Wang Z, Wang Y, Luan J, Morrissey JJ, Naik RR, Singamaneni S. Plasmonically Enhanced CRISPR/Cas13a-Based Bioassay for Amplification-Free Detection of Cancer-Associated RNA. Adv Healthc Mater 2021; 10:e2100956. [PMID: 34369102 PMCID: PMC8542602 DOI: 10.1002/adhm.202100956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn-around time and extensive capital equipment. Here, an ultrasensitive and amplification-free RNA quantification method is demonstrated by integrating CRISPR-Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR-powered assay exhibits nearly 1000-fold lower limit-of-detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification-free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource-limited settings.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Yixuan Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rajesh R. Naik
- 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
14
|
Krausz AD, Korley FK, Burns MA. A Variable Height Microfluidic Device for Multiplexed Immunoassay Analysis of Traumatic Brain Injury Biomarkers. BIOSENSORS 2021; 11:320. [PMID: 34562910 PMCID: PMC8472232 DOI: 10.3390/bios11090320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Department of Emergency Medicine and Michigan Medicle, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Margulis M, Cohen M, Burg S, Avivi-Mintz S, Danielli A. Optical modulation biosensing system for rapid detection of biological targets at low concentrations. BIOMEDICAL OPTICS EXPRESS 2021; 12:5338-5350. [PMID: 34692186 PMCID: PMC8515954 DOI: 10.1364/boe.430410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In many sensitive assays, target molecules are tagged using fluorescently labeled probes and captured using magnetic beads. Here, we introduce an optical modulation biosensing (OMB) system, which aggregates the beads into a small detection area and separates the signal from the background noise by manipulating the laser beam in and out of the cluster of beads. Using the OMB system to detect human interleukin-8, we demonstrated a limit of detection of 0.02 ng/L and a 4-log dynamic range. Using Zika-positive and healthy individuals' serum samples, we show that the OMB-based Zika IgG serological assay has 96% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
- Equal contribution
| | - Meir Cohen
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
- Equal contribution
| | - Shmuel Burg
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Shira Avivi-Mintz
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| |
Collapse
|
16
|
Roth S, Danielli A. Rapid and Sensitive Inhibitor Screening Using Magnetically Modulated Biosensors. SENSORS 2021; 21:s21144814. [PMID: 34300555 PMCID: PMC8309820 DOI: 10.3390/s21144814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023]
Abstract
Inhibitor screening is an important tool for drug development, especially during the COVID-19 pandemic. The most used in vitro inhibitor screening tool is an enzyme-linked immunosorbent assay (ELISA). However, ELISA-based inhibitor screening is time consuming and has a limited dynamic range. Using fluorescently and magnetically modulated biosensors (MMB), we developed a rapid and sensitive inhibitor screening tool. This study demonstrates its performance by screening small molecules and neutralizing antibodies as potential inhibitors of the interaction between the spike protein 1 (S1) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the angiotensin-converting enzyme 2 (ACE2) receptor. The MMB-based assay is highly sensitive, has minimal non-specific binding, and is much faster than the commonly used ELISA (2 h vs. 7–24 h). We anticipate that our method will lead to a remarkable advance in screening for new drug candidates.
Collapse
|
17
|
Lu D, Jiang H, Zhang G, Luo Q, Zhao Q, Shi X. An In Situ Generated Prussian Blue Nanoparticle-Mediated Multimode Nanozyme-Linked Immunosorbent Assay for the Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25738-25747. [PMID: 34043909 DOI: 10.1021/acsami.1c04751] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aims to develop a novel multimode (photothermal/colorimetric/fluorescent) nanozyme-linked immunosorbent assay (NLISA) based on the in situ generation of Prussian blue nanoparticles (PBNPs) on the surface of magnetic nanoparticles (MNPs). Being considered the most toxic among the mycotoxins, aflatoxin B1 (AFB1) was chosen as the proof-of-concept target. In this strategy, MNPs, on which an AFB1 aptamer was previously assembled via streptavidin-biotin linkage, are anchored to 96-well plates by AFB1 and antibody. In the presence of HCl and K4Fe(CN)6, PBNPs formed in situ on the MNP surface, thereby achieving photothermal and colorimetric signal readout due to their photothermal effect and intrinsic peroxidase-like activity. Based on fluorescence quenching by MNPs, Cy5 fluorescence was recovered by the in situ generation of PBNPs to facilitate ultrasensitive fluorescence detection. Photothermal and colorimetric signals allow portable/visual point-of-care testing, and fluorescent signals enable accurate determination with a detection limit of 0.54 fg/mL, which is 6333 and 28 times lower than those of photothermal and colorimetric analyses, respectively. We expect that this proposed multimode NLISA can not only reduce the false-positive/negative rates through the multisignal crossdetection in AFB1 monitoring but also provide a universal way of sophisticated instrumentation-free, easy-to-use, cost-effective, and highly sensitive detection of other food hazards.
Collapse
Affiliation(s)
- Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Guangyin Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Luo
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Ramkumar PK, Rountree CM, Saggere L, Finan JD. Metrology and characterization of SU-8 microstructures using autofluorescence emission. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:045014. [PMID: 34413579 PMCID: PMC8372371 DOI: 10.1088/1361-6439/abe7c9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sophisticated three-dimensional microstructures fabricated using the negative tone SU-8 photoresist are used in many biomedical and microfluidic applications. Scanning electron microscopy (SEM) and profilometry are commonly used metrological techniques for the dimensional characterization of fabricated SU-8 microstructures but are not viable for non-destructive measurements and characterization of subsurface features like hidden microchannels. In this study, we report a unique methodology for the non-destructive dimensional characterization of SU-8 microstructures using the emitted autofluorescence radiation from fabricated SU-8 microstructures to generate depth profiles. The relationship between autofluorescence emission intensities and the thicknesses of the microstructures measured using SEM was determined and used to characterize the dimensions of unknown SU-8 microstructures based on their autofluorescence intensities. Lateral dimensions were also measured. This relationship was used to create highly accurate depth profiles for different types of microstructures including hidden subsurface features. These results were validated by comparison with SEM. The results suggest a feasible and accurate non-destructive, low cost, metrological technique to characterize SU-8 surface and subsurface microstructures using autofluorescence emission intensities.
Collapse
Affiliation(s)
- Pradeep Kumar Ramkumar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Corey M Rountree
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - John D Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
19
|
Margulis M, Ashri S, Cohen M, Danielli A. Detecting nucleic acid fragments in serum using a magnetically modulated sandwich assay. JOURNAL OF BIOPHOTONICS 2019; 12:e201900104. [PMID: 31325217 DOI: 10.1002/jbio.201900104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 05/11/2023]
Abstract
We present a novel assay for rapid and highly sensitive detection of specific nucleic acid fragments in human serum. In a magnetic modulation biosensing (MMB) system, magnetic beads and fluorescently labeled probes are attached to the target analyte and form a "sandwich" complex. An alternating external magnetic field gradient condenses the magnetic beads (and hence the target molecules with the fluorescently labeled probes) to the detection volume and sets them in a periodic motion, in and out of a laser beam. A synchronous detection enables the removal of background signal from the oscillating target signal without complicated sample preparation. The high sensitivity of the MMB system, combined with the specificity of a sandwich hybridization assay, enables detection of DNA fragments without enzymatic signal amplification. Here, we demonstrate the sensitivity of the assay by directly detecting the EML4-ALK oncogenic translocation sequence spiked in human serum. The calculated limit of detection is 1.4 pM, which is approximately 150 times better than a conventional plate reader. In general, the MMB-assisted SHA can be implemented in many other applications for which enzymatic amplification, such as PCR, is not applicable and where rapid detection of specific nucleic acid targets is required.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Saar Ashri
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Meir Cohen
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
20
|
Margulis M, Danielli A. Rapid and Sensitive Detection of Repetitive Nucleic Acid Sequences Using Magnetically Modulated Biosensors. ACS OMEGA 2019; 4:11749-11755. [PMID: 31460281 PMCID: PMC6682110 DOI: 10.1021/acsomega.9b01071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Repetitive DNA sequences are abundant in the genome of most biological species. These sequences are naturally "preamplified", which makes them a preferential target for a variety of biological assays. Current methods to detect specific DNA sequences are based on the quantitative polymerase chain reaction (PCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer (FRET)-based probe. Here, to rapidly detect a repetitive DNA sequence, we combine a highly sensitive magnetic modulation biosensing (MMB) system and a modified double-quenched FRET-based probe. The high numbers of copies of the female-specific XhoI sequence of the domestic chicken (Gallus gallus), combined with the low background fluorescence levels of the modified double-quenched probe and the high sensitivity of the MMB system, allow us to determine the chick sex in ovo within 13 min, with 100% sensitivity and specificity. Compared to quantitative PCR, the presented assay is 4-9 times faster. More broadly, by specifically tailoring the primers and probe, the proposed assay can detect any target DNA sequence, either repetitive or nonrepetitive.
Collapse
|
21
|
Li CY, Kang YF, Qi CB, Zheng B, Zheng MQ, Song CY, Guo ZZ, Lin Y, Pang DW, Tang HW. Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Anal Chem 2019; 91:7950-7957. [DOI: 10.1021/acs.analchem.9b01941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ming-Qiu Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chong-Yang Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|