1
|
Zhu Q, Cohen SR, Brontvein O, Fransson J, Naaman R. Magnetic Monopole-Like Behavior in Superparamagnetic Nanoparticle Coated With Chiral Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406631. [PMID: 39205548 DOI: 10.1002/smll.202406631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention due to their promising applications in biomedicine, chemical catalysis, and magnetic memory devices. In this work, the force is measured between a single SPION coated with chiral molecules and a ferromagnetic substrate by atomic force microscopy (AFM), with the substrate magnetized either toward or away from the approaching AFM tip. The force between the coated SPION and the magnetic substrate depends on the handedness of the molecules adsorbed on the SPION and on the direction of the magnetization of the substrate. By inserting nm-scale spacing layers between the coated SPION and the magnetic substrate it is shown that the SPION has a short-range magnetic monopole-like magnetic field. A theoretical framework for the nature of this field is provided.
Collapse
Affiliation(s)
- Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Olga Brontvein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonas Fransson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
2
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Fransson J. Temperature activated chiral induced spin selectivity. J Chem Phys 2023; 159:084115. [PMID: 37638628 DOI: 10.1063/5.0155854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Recent experiments performed on chiral molecules, comprising transition metal or rare earth elements, indicate temperature reinforced chiral induced spin selectivity. In these compounds, spin selectivity is suppressed in the low temperature regime but grows by one to several orders of magnitude as the temperature is increased to room temperature. By relating temperature to nuclear motion, it is proposed that nuclear displacements acting on the local spin moments, through indirect exchange interactions, generate an anisotropic magnetic environment that is enhanced with temperature. The induced local anisotropy field serves as the origin of a strongly increased spin selectivity at elevated temperature.
Collapse
Affiliation(s)
- J Fransson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| |
Collapse
|
4
|
Gupta R, Pradhan J, Haldar A, Murapaka C, Chandra Mondal P. Chemical Approach Towards Broadband Spintronics on Nanoscale Pyrene Films. Angew Chem Int Ed Engl 2023; 62:e202307458. [PMID: 37363873 DOI: 10.1002/anie.202307458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
The injection of pure spin current into the non-magnetic layer plays a crucial role in transmitting, processing, and storing data information in the realm of spintronics. To understand broadband molecular spintronics, pyrene oligomer film (≈20 nm thickness) was prepared using an electrochemical method forming indium tin oxide (ITO) electrode/pyrene covalent interfaces. Permalloy (Ni80 Fe20 ) films with different nanoscale thicknesses were used as top contact over ITO/pyrene layers to estimate the spin pumping efficiency across the interfaces using broadband ferromagnetic resonance spectra. The spintronic devices are composed of permalloy/pyrene/ITO orthogonal configuration, showing remarkable spin pumping from permalloy to pyrene film. The large spin pumping is evident from the linewidth broadening of 5.4 mT at 9 GHz, which is direct proof of spin angular momentum transfer across the interface. A striking observation is made with the high spin-mixing conductance of ≈1.02×1018 m-2 , a value comparable to the conventional heavy metals. Large spin angular moment transfer was observed at the permalloy-pyrene interfaces, especially at the lower thickness of permalloy, indicating a strong spinterface effect. Pure spin current injection from ferromagnetic into electrochemically grown pyrene films ensures efficient broadband spin transport, which opens a new area in molecular broadband spintronics.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Jhantu Pradhan
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Arabinda Haldar
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Chandrasekhar Murapaka
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285, Telangana, India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
5
|
Xiao F, Wang Z, Li W, Qi W, Bai X, Xu H. Cefepime-modified magnetic nanoparticles and enzymatic colorimetry for the detection of Listeria monocytogenes in lettuces. Food Chem 2023; 409:135296. [PMID: 36586253 DOI: 10.1016/j.foodchem.2022.135296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A novel sandwich assay for the detection of L. monocytogenes was designed based on antibiotic magnetic separation and enzymatic colorimetry. PEG-mediated cefepime functionalized magnetic nanoparticles (Cefe-PEG-MNPs) was reported for the first time to anchor L. monocytogenes cells with excellent bacterial capture capacity. The capture efficiency of L. monocytogenes in lettuce sample with high concentration (3.1 × 106 CFU/mL) was more than 73.8%. Anti-L. monocytogenes monoclonal antibody was adopted as the second anchoring agent to ensure the specificity for L. monocytogenes, which was co-modified with HRP on the surface of gold nanoparticles (AuNPs-HRP/mAb) to form AuNPs-HRP/mAb@L. monocytogenes@Cefe-PEG-MNPs sandwich complexes, and TMB was added to generate a colorimetric signal. The limit of detection in contaminated lettuce, watermelon juice, and fresh meat samples were both 3.1 × 102 CFU/mL, and the whole assay takes about 110 min. Based on the above facts, the proposed method has great potential for rapid separation and detection of pathogenic bacteria in food.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zhengzheng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Wenfei Qi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xuekun Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
6
|
Levy HM, Schneider A, Tiwari S, Zer H, Yochelis S, Goloubinoff P, Keren N, Paltiel Y. The effect of spin exchange interaction on protein structural stability. Phys Chem Chem Phys 2022; 24:29176-29185. [PMID: 36444947 DOI: 10.1039/d2cp03331c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partially charged chiral molecules act as spin filters, with preference for electron transport toward one type of spin ("up" or "down"), depending on their handedness. This effect is named the chiral induced spin selectivity (CISS) effect. A consequence of this phenomenon is spin polarization concomitant with electric polarization in chiral molecules. These findings were shown by adsorbing chiral molecules on magnetic surfaces and investigating the spin-exchange interaction between the surface and the chiral molecule. This field of study was developed using artificial chiral molecules. Here we used such magnetic surfaces to explore the importance of the intrinsic chiral properties of proteins in determining their stability. First, proteins were adsorbed on paramagnetic and ferromagnetic nanoparticles in a solution, and subsequently urea was gradually added to induce unfolding. The structural stability of proteins was assessed using two methods: bioluminescence measurements used to monitor the activity of the Luciferase enzyme, and fast spectroscopy detecting the distance between two chromophores implanted at the termini of a Barnase core. We found that interactions with magnetic materials altered the structural and functional resilience of the natively folded proteins, affecting their behavior under varying mild denaturing conditions. Minor structural disturbances at low urea concentrations were impeded in association with paramagnetic nanoparticles, whereas at higher urea concentrations, major structural deformation was hindered in association with ferromagnetic nanoparticles. These effects were attributed to spin exchange interactions due to differences in the magnetic imprinting properties of each type of nanoparticle. Additional measurements of proteins on macroscopic magnetic surfaces support this conclusion. The results imply a link between internal spin exchange interactions in a folded protein and its structural and functional integrity on magnetic surfaces. Together with the accumulating knowledge on CISS, our findings suggest that chirality and spin exchange interactions should be considered as additional factors governing protein structures.
Collapse
Affiliation(s)
- Hadar Manis Levy
- Applied Physics Department, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Avi Schneider
- Applied Physics Department, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Yochelis
- Applied Physics Department, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yossi Paltiel
- Applied Physics Department, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Clever C, Wierzbinski E, Bloom BP, Lu Y, Grimm HM, Rao SR, Horne WS, Waldeck DH. Benchmarking Chiral Induced Spin Selectivity Measurements ‐ Towards Meaningful Comparisons of Chiral Biomolecule Spin Polarizations. Isr J Chem 2022. [DOI: 10.1002/ijch.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caleb Clever
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Emil Wierzbinski
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yiyang Lu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Haley M. Grimm
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Silpa R. Rao
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - W. Seth Horne
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
8
|
Kwon J, Choi WJ, Jeong U, Jung W, Hwang I, Park KH, Ko SG, Park SM, Kotov NA, Yeom J. Recent advances in chiral nanomaterials with unique electric and magnetic properties. NANO CONVERGENCE 2022; 9:32. [PMID: 35851425 PMCID: PMC9294134 DOI: 10.1186/s40580-022-00322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 06/02/2023]
Abstract
Research on chiral nanomaterials (NMs) has grown radically with a rapid increase in the number of publications over the past decade. It has attracted a large number of scientists in various fields predominantly because of the emergence of unprecedented electric, optical, and magnetic properties when chirality arises in NMs. For applications, it is particularly informative and fascinating to investigate how chiral NMs interact with electromagnetic waves and magnetic fields, depending on their intrinsic composition properties, atomic distortions, and assembled structures. This review provides an overview of recent advances in chiral NMs, such as semiconducting, metallic, and magnetic nanostructures.
Collapse
Affiliation(s)
- Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Won Jin Choi
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94551, USA
| | - Uichang Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Inkook Hwang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seowoo Genevieve Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Min Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Bai T, Ai J, Duan Y, Han L, Che S. Spin Selectivity of Chiral Mesostructured Iron Oxides with Different Magnetisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104509. [PMID: 35098648 DOI: 10.1002/smll.202104509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Spin selectivity physically depends on either magnetic materials with strong internal magnetic fields or symmetry-breaking materials with large spin-orbit coupling (SOC). However, the spin selectivity of symmetry-breaking magnetic materials is not understood. Herein, the spin selectivity of iron oxides with different magnetisms arising from varying spin alignment is investigated. Chiral mesostructured films of Fe3 O4 (CMFFs), γ-Fe2 O3 (CMγFs), and α-Fe2 O3 (CMαFs), which share the same mesostructure, are prepared by a controllable calcination process of chiral mesostructured FeOOH films (CMOFs) grown on the substrate via an amino acid-induced hydrothermal route. CMFFs and CMγFs with ferrimagnetism exhibit magnetic field-dependent and simultaneously chirality-independent magnetic circular dichroism (MCD) signals, while CMαFs with antiferromagnetism exhibit chirality-dependent, magnetic field-independent MCD signals. It is speculated that the competitive effect between the spin alignment-induced and chirality-induced effective magnetic fields determines the energy splitting of opposite spins in the materials with different magnetisms.
Collapse
Affiliation(s)
- Te Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jing Ai
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
10
|
Li X, Nan J, Pan X. Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order. PHYSICAL REVIEW LETTERS 2020; 125:263002. [PMID: 33449790 DOI: 10.1103/physrevlett.125.263002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery nearly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI reaching the energy scale of room temperature, which could support the large spin polarization observed in CISS. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond, respectively, to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.
Collapse
Affiliation(s)
- Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China
| | - Jue Nan
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Ozcelik A, Aranda D, Gil‐Guerrero S, Pola‐Otero XA, Talavera M, Wang L, Behera SK, Gierschner J, Peña‐Gallego Á, Santoro F, Pereira‐Cameselle R, Alonso‐Gómez JL. Distinct Helical Molecular Orbitals through Conformational Lock**. Chemistry 2020; 26:17342-17349. [DOI: 10.1002/chem.202002561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ani Ozcelik
- Departamento de Química Orgánica Universidad de Vigo Campus Universitario 36310 Vigo Spain
| | - Daniel Aranda
- Istituto di Chimica dei Composti Organometallici Consiglio Nazionale delle Ricerche Pisa Italy
- Departamento de Química Física Universidad de Málaga Bulevar Louis Pasteur 31 Málaga 29010 Spain
| | - Sara Gil‐Guerrero
- Departamento de Química Física Universidad de Vigo Campus Universitario 36310 Vigo Spain
| | - Xaquín A. Pola‐Otero
- Departamento de Química Orgánica Universidad de Vigo Campus Universitario 36310 Vigo Spain
| | - Maria Talavera
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies IMDEA Nanoscience C/ Faraday 9, Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Santosh Kumar Behera
- Madrid Institute for Advanced Studies IMDEA Nanoscience C/ Faraday 9, Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA Nanoscience C/ Faraday 9, Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Ángeles Peña‐Gallego
- Departamento de Química Física Universidad de Vigo Campus Universitario 36310 Vigo Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici Consiglio Nazionale delle Ricerche Pisa Italy
| | | | | |
Collapse
|
12
|
Huang Z, Bloom BP, Ni X, Georgieva ZN, Marciesky M, Vetter E, Liu F, Waldeck DH, Sun D. Magneto-Optical Detection of Photoinduced Magnetism via Chirality-Induced Spin Selectivity in 2D Chiral Hybrid Organic-Inorganic Perovskites. ACS NANO 2020; 14:10370-10375. [PMID: 32678570 DOI: 10.1021/acsnano.0c04017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The recent convergence of chiral molecules with metal halide perovskite frameworks gives rise to an interesting family of chiral systems: two-dimensional, chiral hybrid organic-inorganic perovskites (chiral-HOIPs). While possessing photovoltaic properties of traditional HOIPs, this class of materials is endowed with chirality through its organic ligands in which the degeneracy of the electron spin in charge transport is broken. That is, the chirality-induced spin selectivity (CISS) effect manifests, making it a promising platform to bridge opto-spintronic studies and the CISS effect. In this work, chiral-HOIP/NiFe heterostructures are studied by means of the magneto-optical Kerr effect using a Sagnac interferometer. Upon illumination of the chiral-HOIPs, the Kerr signal at the chiral-HOIP/NiFe interface changes, and a linear dependence of the response on the magnetic field is observed. The sign of the slope was found to depend on the chirality of the HOIPs. The results demonstrate the utility of chiral-HOIP materials for chiral opto-spintronic applications.
Collapse
Affiliation(s)
- Zhengjie Huang
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaojuan Ni
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zheni N Georgieva
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melissa Marciesky
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric Vetter
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dali Sun
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
Abstract
This Perspective discusses recent experiments that bear on the chiral induced spin selectivity (CISS) mechanism and its manifestation in electronic and magnetic properties of chiral molecules and materials. Although the discussion emphasizes newer experiments, such as the magnetization dependence of chiral molecule interactions with ferromagnetic surfaces, early experiments, which reveal the nonlinear scaling of the spin filtering with applied potential, are described also. In many of the theoretical studies, one has had to invoke unusually large spin-orbit couplings in order to reproduce the large spin filtering observed in experiments. Experiments imply that exchange interactions and Pauli exclusion constraints are an important aspect of CISS. They also demonstrate the spin-dependent charge flow between a ferromagnetic substrate and chiral molecules. With these insights in mind, a simplified model is described in which the chiral molecule's spin polarization is enhanced by a spin blockade effect to generate large spin filtering.
Collapse
Affiliation(s)
- R Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - D H Waldeck
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 United States
| |
Collapse
|
14
|
Ghosh S, Mishra S, Avigad E, Bloom BP, Baczewski LT, Yochelis S, Paltiel Y, Naaman R, Waldeck DH. Effect of Chiral Molecules on the Electron's Spin Wavefunction at Interfaces. J Phys Chem Lett 2020; 11:1550-1557. [PMID: 32013436 PMCID: PMC7307953 DOI: 10.1021/acs.jpclett.9b03487] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 05/19/2023]
Abstract
Kelvin-probe measurements on ferromagnetic thin film electrodes coated with self-assembled monolayers of chiral molecules reveal that the electron penetration from the metal electrode into the chiral molecules depends on the ferromagnet's magnetization direction and the molecules' chirality. Electrostatic potential differences as large as 100 mV are observed. These changes arise from the applied oscillating electric field, which drives spin-dependent charge penetration from the ferromagnetic substrate to the chiral molecules. The enantiospecificity of the response is studied as a function of the magnetization strength, the magnetization direction, and the handedness and length of the chiral molecules. These new phenomena are rationalized in terms of the chiral-induced spin selectivity (CISS) effect, in which one spin orientation of electrons from the ferromagnet penetrates more easily into a chiral molecule than does the other orientation. The large potential changes (>kT at room temperature) manifested here imply that this phenomenon is important for spin transport in chiral spintronic devices and for magneto-electrochemistry of chiral molecules.
Collapse
Affiliation(s)
- Supriya Ghosh
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Suryakant Mishra
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Eytan Avigad
- Applied
Physics Department, the Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Brian P. Bloom
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - L. T. Baczewski
- Magnetic
Heterostructures Laboratory, Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
| | - Shira Yochelis
- Applied
Physics Department, the Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yossi Paltiel
- Applied
Physics Department, the Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Castriciano MA, Trapani M, Romeo A, Depalo N, Rizzi F, Fanizza E, Patanè S, Monsù Scolaro L. Influence of Magnetic Micelles on Assembly and Deposition of Porphyrin J-Aggregates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E187. [PMID: 31973230 PMCID: PMC7074871 DOI: 10.3390/nano10020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Clusters of superparamagnetic iron oxide nanoparticles (SPIONs) have been incorporated into the hydrophobic core of polyethylene glycol (PEG)-modified phospholipid micelles. Two different PEG-phospholipids have been selected to guarantee water solubility and provide an external corona, bearing neutral (SPIONs@PEG-micelles) or positively charged amino groups (SPIONs@NH2-PEG-micelles). Under acidic conditions and with specific mixing protocols (porphyrin first, PF, or porphyrin last, PL), the water-soluble 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (TPPS) forms chiral J-aggregates, and in the presence of the two different types of magnetic micelles, an increase of the aggregation rates has been generally observed. In the case of the neutral SPIONs@PEG-micelles, PL protocol affords a stable nanosystem, whereas PF protocol is effective with the charged SPIONs@NH2-PEG-micelles. In both cases, chiral J-aggregates embedded into the magnetic micelles (TPPS@SPIONs@micelles) have been characterized in solution through UV/vis absorption and circular/linear dichroism. An external magnetic field allows depositing films of the TPPS@SPIONs@micelles that retain their chiroptical properties and exhibit a high degree of alignment, which is also confirmed by atomic force microscopy.
Collapse
Affiliation(s)
- Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
| | - Andrea Romeo
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy
| | - Nicoletta Depalo
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
| | - Federica Rizzi
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy;
| | - Luigi Monsù Scolaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy
| |
Collapse
|
16
|
Abstract
Chirality-induced spin selectivity, discovered about two decades ago in helical molecules, is a nonequilibrium effect that emerges from the interplay between geometrical helicity and spin-orbit interactions. Several model Hamiltonians building on this interplay have been proposed, and while these can yield spin-polarized transport properties that agree with experimental observations, they simultaneously depend on unrealistic values of the spin-orbit interaction parameters. It is likely, however, that a common deficit originates from the fact that all these models are uncorrelated or single-electron theories. Therefore, chirality-induced spin selectivity is here addressed using a many-body approach, which allows for nonequilibrium conditions and a systematic treatment of the correlated state. The intrinsic molecular spin polarization increases by 2 orders of magnitude, or more, compared to the corresponding result in the uncorrelated model. In addition, the electronic structure responds to varying external magnetic conditions which, therefore, enables comparisons of the currents provided for different spin polarizations in one or both of the leads between which the molecule is mounted. Using experimentally feasible parameters and room temperature, the obtained normalized difference between such currents may be as large as 5-10% for short molecular chains, clearly suggesting the vital importance of including electron correlations when searching for explanations of the phenomenon.
Collapse
Affiliation(s)
- J Fransson
- Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| |
Collapse
|
17
|
Extraction of magnetic circular dichroism effects from blended mixture of magnetic linear dichroism signals in the cobalt/Scotch tape system. Sci Rep 2019; 9:17192. [PMID: 31748587 PMCID: PMC6868135 DOI: 10.1038/s41598-019-53880-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023] Open
Abstract
Circular dichroism (CD) signals revealed in some materials may arise from different origins during measurements. Magnetic field dependent CD (MCD) emanating from the spin-polarized band provides direct insight into the spin-spin interband transitions in magnetic materials. On the contrary, natural CD effects which are artefactual signals resulting from the linear polarization (LP) components during the polarization modulation with a photo-elastic modulator in anisotropic polymer systems were usually observed. There is no simple method to reliably distinguish MCD effect due to spin polarized band structures from natural CD effect, which limits our understanding of the magnetic material/polymer hybrid structures. This paper aims to introduce a general strategy of averaging out the magnetic linear dichroism (MLD) contributions due to the anisotropic structure and disentangling MCD signal(s) from natural MCD signal(s). We demonstrate the effectiveness of separating MCD from natural MCD using rotational MCD measurement and presented the results of a sample with Co thin film on polymer Scotch tape (unplasticized polyvinyl chloride) glued on a quartz substrate. We demonstrate that the proposed method can be used as an effective tool in disentangling MCD and natural MCD effects, and it opens prospects to study the magnetic material /polymer hybrid systems.
Collapse
|
18
|
Lidor-Shalev O, Yemini R, Leifer N, Nanda R, Tibi A, Perelshtein I, Avraham ES, Mastai Y, Noked M. Growth of Hybrid Inorganic/Organic Chiral Thin Films by Sequenced Vapor Deposition. ACS NANO 2019; 13:10397-10404. [PMID: 31509374 DOI: 10.1021/acsnano.9b04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the many challenges in the study of chiral nanosurfaces and nanofilms is the design of accurate and controlled nanoscale films with enantioselective activity. Controlled design of chiral nanofilms creates the opportunity to develop chiral materials with nanostructured architecture. Molecular layer deposition (MLD) is an advanced surface-engineering strategy for the preparation of hybrid inorganic-organic thin films, with a desired embedded property; in our study this is chirality. Previous attempts to grow enantioselective thin films were mostly focused on self-assembled monolayers or template-assisted synthesis, followed by removal of the chiral template. Here, we report a method to prepare chiral hybrid inorganic-organic nanoscale thin films with controlled thickness and impressive enantioselective properties. We present the use of an MLD reactor for sequenced vapor deposition to produce enantioselective thin films, by embedding the chirality of chiral building blocks into thin films. The prepared thin films demonstrate enantioselectivity of ∼20% and enantiomeric excess of up to 50%. We show that our controlled synthesis of chiral thin films generates opportunities for enantioselective coatings over various templates and 3D membranes.
Collapse
Affiliation(s)
- Ortal Lidor-Shalev
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Reut Yemini
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Nicole Leifer
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Raju Nanda
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Aviv Tibi
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Ilana Perelshtein
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Efrat Shawat Avraham
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Yitzhak Mastai
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Malachi Noked
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
19
|
Appel C, Kuttich B, Stühn L, Stark RW, Stühn B. Structural Properties and Magnetic Ordering in 2D Polymer Nanocomposites: Existence of Long Magnetic Dipolar Chains in Zero Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12180-12191. [PMID: 31430162 DOI: 10.1021/acs.langmuir.9b02094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The existence of magnetic dipolar nanoparticle chains at zero field has been predicted theoretically for decades, but these structures are rarely observed experimentally. A prerequisite is a permanent magnetic moment on the particles forming the chain. Here we report on the observation of magnetic dipolar chains of spherical iron oxide nanoparticles with a diameter of 12.8 nm. The nanoparticles are embedded in an ultrathin polymer film. Due to the high viscosity of the polymer matrix, the dominating aggregation mechanism is driven by dipolar interactions. Smaller iron oxide nanoparticles (8 nm) show no permanent magnetic moment and do not form chains but compact aggregates. Mixed monolayers of iron oxide nanoparticles and polymer at the air-water interface are characterized by Langmuir isotherms and in situ X-ray reflectometry (XRR). The combination of the particles with a polymer leads to a stable polymer nanocomposite film at the air-water interface. XRR experiments show that nanoparticles are immersed in a thin polymer matrix of 2 nm. Using atomic force microscopy (AFM) on Langmuir-Blodgett films, we measure the lateral distribution of particles in the film. An analysis of single structures within transferred films results in fractal dimensions that are in excellent agreement with 2D simulations.
Collapse
Affiliation(s)
- Christian Appel
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| | - Lukas Stühn
- Physics of Surfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 16 , D-64287 Darmstadt , Germany
| | - Robert W Stark
- Physics of Surfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 16 , D-64287 Darmstadt , Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| |
Collapse
|
20
|
Tian Q, Xie S. Spin Injection and Transport in Organic Materials. MICROMACHINES 2019; 10:mi10090596. [PMID: 31510018 PMCID: PMC6780273 DOI: 10.3390/mi10090596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
This review introduces some important spin phenomena of organic molecules and solids and their devices: Organic spin injection and transport, organic spin valves, organic magnetic field effects, organic excited ferromagnetism, organic spin currents, etc. We summarize the experimental and theoretical progress of organic spintronics in recent years and give prospects.
Collapse
Affiliation(s)
- Qipeng Tian
- School of Physics, Shandong University, Jinan 250100, China.
| | - Shijie Xie
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
21
|
Santos JI, Rivilla I, Cossío FP, García-García FJ, Matxain JM, Grzeliczak M, Mazinani SKS, Ugalde JM, Mujica V. Reply to "Comment on 'Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance'". ACS NANO 2019; 13:6133-6136. [PMID: 31135135 DOI: 10.1021/acsnano.9b00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Jose I Santos
- SGIker-UPV/EHU, Centro "Joxe Mari Korta" , Tolosa Hiribidea, 72 , E-20018 Donostia-San Sebastian , Spain
| | - Iván Rivilla
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 3 , 20018 Donostia-San Sebastián Spain
| | - Fernando P Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), and Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 3 , 20018 Donostia-San Sebastián Spain
| | - F Javier García-García
- ICTS-Centro Nacional de Microscopía Electrónica, UCM , Av. Complutense S/N , 28040 Madrid , Spain
| | - Jon M Matxain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Marek Grzeliczak
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Shobeir K S Mazinani
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jesus M Ugalde
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K.1072, 20080 Donostia , Euskadi , Spain
| | - Vladimiro Mujica
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
22
|
Light-driven molecular switch for reconfigurable spin filters. Nat Commun 2019; 10:2455. [PMID: 31165729 PMCID: PMC6549145 DOI: 10.1038/s41467-019-10423-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 11/08/2022] Open
Abstract
Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches. The chirality provides new route for organic materials to be implemented in the spintronics applications. Here the authors show a solid-state spin-filtering device in an organic spin-valve structure enabled by light irradiation induced change in the chirality of molecule.
Collapse
|
23
|
Abendroth JM, Stemer DM, Bloom BP, Roy P, Naaman R, Waldeck DH, Weiss PS, Mondal PC. Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS NANO 2019; 13:4928-4946. [PMID: 31016968 DOI: 10.1021/acsnano.9b01876] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optical control and readout of electron spin and spin currents in thin films and nanostructures have remained attractive yet challenging goals for emerging technologies designed for applications in information processing and storage. Recent advances in room-temperature spin polarization using nanometric chiral molecular assemblies suggest that chemically modified surfaces or interfaces can be used for optical spin conversion by exploiting photoinduced charge separation and injection from well-coupled organic chromophores or quantum dots. Using light to drive photoexcited charge-transfer processes mediated by molecules with central or helical chirality enables indirect measurements of spin polarization attributed to the chiral-induced spin selectivity effect and of the efficiency of spin-dependent electron transfer relative to competitive relaxation pathways. Herein, we highlight recent approaches used to detect and to analyze spin selectivity in photoinduced charge transfer including spin-transfer torque for local magnetization, nanoscale charge separation and polarization, and soft ferromagnetic substrate magnetization- and chirality-dependent photoluminescence. Building on these methods through systematic investigation of molecular and environmental parameters that influence spin filtering should elucidate means to manipulate electron spins and photoexcited states for room-temperature optoelectronic and photospintronic applications.
Collapse
Affiliation(s)
- John M Abendroth
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dominik M Stemer
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Brian P Bloom
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Partha Roy
- Department of Chemistry , Central University of Rajasthan , Kishangarh 305817 Ajmer , India
| | - Ron Naaman
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David H Waldeck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | | |
Collapse
|