1
|
Mei Y, Liu J, Cui T, Li Y, Liu T, Ji X, Amine K. Defect Chemistry in High-Voltage Cathode Materials for Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411311. [PMID: 39400467 DOI: 10.1002/adma.202411311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Indexed: 10/15/2024]
Abstract
High-voltage cathodes (HVCs) have emerged as a paramount role for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the pursuit of HVCs comes with inherent challenges related to defective structures, which significantly impact the electrochemical performance of LIBs. The current obstacle lies in the lack of a comprehensive understanding of defects and their precise effects. This perspective aims to provide insights into defect chemistry for governing HVCs. The classifications, formation mechanisms, and evolution of defects are outlined to explore the intricate relationship between defects and electrochemical behavior. The pressing need for cutting-edge characterization techniques that comprehensively investigate defects across various temporal and spatial scales is emphasized. Building on these fundamental understandings, engineering strategies such as composition tailoring, morphology design, interface modification, and structural control to mitigate or utilize defects are thoroughly discussed for enhanced HVCs performance. These insights are expected to provide vital guidelines for developing high-performance HVCs for next-generation high-energy lithium-ion batteries.
Collapse
Affiliation(s)
- Yu Mei
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Junxiang Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tony Cui
- Henry M. Gunn High School, 780 Arastradero Road, Palo Alto, CA, 94306, USA
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
2
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Xie X, Jin K, Wang Z, Wang S, Zhu J, Huang J, Tang S, Cai K, Zhang J. Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. SMALL METHODS 2024; 8:e2301330. [PMID: 38044264 DOI: 10.1002/smtd.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Quantitative analysis of up-regulated biomarkers in pathological tissues is helpful to tumor surgery yet the loss of biomarker extraction and time-consuming operation limited the accurate and quick judgement in preoperative or intraoperative diagnosis. Herein, an immobilization-free electrochemical sensing platform is developed by constraint coupling of electron transfer cascade on electrode-nanosensor interface. Specifically, electrochemical indicator (Ri)-labeled single-stranded DNA on electroactive nanodonor (polydopamine, PDA) can be responsively detached by formation of DNA complex through the recognition and binding with targets. By applying the oxidation potential of Ri, nanosensor collisions on electrode surface trigger a cascade redox cycling of PDA and Ri through synchronous electron transfer, which boost the amplification of current signal output. The developed nanosensor exhibit excellent linear response toward up-regulated biomarkers (miRNA-21, ATP, and VEGF) with low detection limits (32 fM, 386 pM, and 2.8 pM). Moreover, background influence from physiological interferent is greatly reduced by restricted electron transfer coupling on electrode. The practical applicability is illustrated in sensitive and highly repeatable profiling of miRNA-21 in lysate of tumor cells and tumor tissue, beneficial for more reliable diagnosis. This electrochemical platform by employing electron transfer cascades at heterogeneous interfaces offers a route to anti-interference detection of biomarkers in tumor tissues.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
4
|
Wang F, Zhang C, Wu F, He Z, Huang Y. Investigation of the Single-Particle Scale Structure-Activity Relationship Providing New Insights for the Development of High-Performance Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400683. [PMID: 38747891 DOI: 10.1002/adma.202400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/11/2024] [Indexed: 05/21/2024]
Abstract
As electric vehicles, portable electronic devices, and tools have increasingly high requirements for battery energy density and power density, constantly improving battery performance is a research focus. Accurate measurement of the structure-activity relationship of active materials is key to advancing the research of high-performance batteries. However, conventional performance tests of active materials are based on the electrochemical measurement of porous composite electrodes containing active materials, polymer binders, and conductive carbon additives, which cannot establish an accurate structure-activity relationship with the physical characterization of microregions. In this review, in order to promote the accurate measurement and understanding of the structure-activity relationship of materials, the electrochemical measurement and physical characterization of energy storage materials at single-particle scale are reviewed. The potential problems and possible improvement schemes of the single particle electrochemical measurement and physical characterization are proposed. Their potential applications in single particle electrochemical simulation and machine learning are prospected. This review aims to promote the further application of single particle electrochemical measurement and physical characterization in energy storage materials, hoping to achieve 3D unified evaluation of physical characterization, electrochemical measurement, and theoretical simulation at the single particle scale to provide new inspiration for the development of high-performance batteries.
Collapse
Affiliation(s)
- Fei Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Chong Zhang
- Hebei Key Laboratory of Applied Chemistry, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Fan Wu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Zhichao He
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Xu Y, Sun AR, Liu HY, Zhang ZL. Collision Oxidation Behavior of Silver Nanoparticles in Alkaline Solution. J Phys Chem Lett 2024; 15:5594-5599. [PMID: 38755539 DOI: 10.1021/acs.jpclett.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, silver nanoparticles (Ag NPs) have been used as positive electrode material for zinc/silver batteries, and the silver oxides formed during the charging process determine the discharge performance of batteries. Therefore, it is important to study the oxidation behavior of Ag NPs in alkaline solution. Single-nanoparticle collision is an important tool for analyzing oxidation behavior of individual nanoparticles. Based on thermodynamic information from collision events, it is known that oxidation products are potential-dependent and size-dependent. Based on dynamic information, including collisional peak shapes and duration time, it was observed that the Ag NP collision oxidation process changed from stepwise oxidation to direct oxidation as the potential increased or size decreased. This work provides guidance for application of Ag NPs in zinc/silver batteries and proposed a strategy for oxidation behavior of individual NP that could be tracked in situ through an all-encompassing view of thermodynamic and dynamic information.
Collapse
Affiliation(s)
- Ying Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - An-Rong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Yuan Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
7
|
Xu Y, Jiang WJ, Bai YY, Yang YJ, Zhang ZL. Artificial Intelligence-Assisted Multiparameter Size Discrimination of Silver Nanoparticles through Electrochemical Collision. Anal Chem 2024; 96:6195-6201. [PMID: 38607805 DOI: 10.1021/acs.analchem.3c05115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Single particle collision is an important tool for size analysis at the individual particle level; however, due to complex dynamic behaviors of nanoparticles on the surface of an electrode, the accuracy of size discrimination is limited. A silver (Ag) nanoparticle (NP) was chosen as the research target, and the dynamic behavior of Ag NPs was simplified by enhancing adsorption between Ag NP and Au ultramicroelectrode (UME) in alkaline media. Immediately after, accurate dynamic and thermodynamic information on single Ag NP was accurately extracted from collision events, including current intensity, transferred charge, and duration time. On the basis that there were differences between parameters of different-sized Ag NPs, multiparameter size discrimination was proposed, which improved the accuracy compared to single-parameter discrimination. More intriguingly, multiparameter analysis was combined with artificial intelligence, a tool adept at processing multidimensional data, for the first time. Finally, artificial intelligence-assisted multiparameter size discrimination was successfully used to intelligently distinguish mixed Ag NPs, with an optimal accuracy of more than 95%. To sum up, the artificial intelligence-assisted multiparameter method showed an excellent ability to quickly achieve the most accurate size discrimination of nanoparticles at the level of individual particle and provide an effective guidance for the application of nanoparticles.
Collapse
Affiliation(s)
- Ying Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei-Jian Jiang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- Department of Chemistry, Yuncheng University, Yuncheng 04400, People's Republic of China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
8
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
9
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
10
|
Sundaresan V, Metro J, Cutri AR, Palei M, Mannam V, Oh C, Hoffman AJ, Howard S, Bohn PW. Nanopore-Enabled Dark-Field Digital Sensing of Nanoparticles. Anal Chem 2023; 95:12993-12997. [PMID: 37615663 DOI: 10.1021/acs.analchem.3c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In this study, we use nanopore arrays as a platform for detecting and characterizing individual nanoparticles (NPs) in real time. Dark-field imaging of nanopores with dimensions smaller than the wavelength of light occurs under conditions where trans-illumination is blocked, while the scattered light propagates to the far-field, making it possible to identify nanopores. The intensity of scattering increases dramatically during insertion of AgNPs into empty nanopores, owing to their plasmonic properties. Thus, momentary occupation of a nanopore by a AgNP produces intensity transients that can be analyzed to reveal the following characteristics: (1) NP scattering intensity, which scales with the sixth power of the AgNP radius, shows a normal distribution arising from the heterogeneity in NP size, (2) the nanopore residence time of NPs, which was observed to be stochastic with no permselective effects, and (3) the frequency of AgNP capture events on a 21 × 21 nanopore array, which varies linearly with the concentration of the NPs, agreeing with the frequency calculated from theory. The lower limit of detection (LOD) for NPs was 130 fM, indicating that the measurement can be used in applications in which ultrasensitive detection is required. The results presented here provide valuable insights into the dynamics of NP transport into and out of nanopores and highlight the potential of nanopore arrays as powerful, massively parallel tools for nanoparticle characterization and detection.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38655, United States
| | - Jarek Metro
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allison R Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Milan Palei
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Varun Mannam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christiana Oh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony J Hoffman
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
12
|
Chen Y, Liu Y, Wang D, Gao G, Zhi J. Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single Saccharomyces cerevisiae. Anal Chem 2022; 94:12630-12637. [PMID: 36068505 DOI: 10.1021/acs.analchem.2c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective detection of colliding entities, especially cells and microbes, is of great challenge in single-entity electrochemistry. Herein, based on the different cellular electron transport pathways between microbes and mediators, we report a three-mediator system [K3Fe(CN)6, K4Fe(CN)6, and menadione] to achieve redox activity analysis and selective identification of single Saccharomyces cerevisiae without the usage of antibodies. K4Fe(CN)6 in the three-mediator system will oxidize near the electrode surface and increase the local concentration of K3Fe(CN)6, which will promote the redox reaction of S. cerevisiae. The hydrophobic mediator─menadione─can selectively penetrate through the S. cerevisiae membrane and get access to its intracellular redox center and can further react with K3Fe(CN)6 in the bulk solution. In contrast, the mediator can only get access to the bacterial membranes of Escherichia coli and Staphylococcus aureus, which results in different electrochemical collision signals between the above microbes. In the three-mediator system, upward step-like collision signals were observed in S. cerevisiae suspension, which are related to their microbial redox activity. In comparison, E. coli or S. aureus only generated downward current steps because the blockage effect of mediator diffusion suppresses their redox activities. When S. cerevisiae co-existed with E. coli or S. aureus, transients generated by both blockage and redox activity were observed. The approach enables us to trace the collision behaviors of different microbes and distinguish their simultaneous collisions, which is the foundation for further application of electrochemical collision technique in the specific identification of single biological entities.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing.100049, PR China
| |
Collapse
|
13
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Weiß LJK, Music E, Rinklin P, Banzet M, Mayer D, Wolfrum B. On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry. Anal Chem 2022; 94:11600-11609. [PMID: 35900877 DOI: 10.1021/acs.analchem.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| |
Collapse
|
15
|
Yang YJ, Bai YY, Huangfu YY, Yang XY, Tian YS, Zhang ZL. Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Anal Chem 2022; 94:8392-8398. [DOI: 10.1021/acs.analchem.2c00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Shen Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
16
|
Shen X, Liu R, Wang D. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes. Anal Chem 2022; 94:8110-8114. [PMID: 35648840 DOI: 10.1021/acs.analchem.2c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Revealing the electrocatalytic features of single redox enzyme is significant to both fundamental biological processes and practical catalysis and sensing applications. Herein, we directly reveal the electrocatalytic current from a single enzyme inside the carbon nanopipettes via electrochemical collision strategies, based on the increased activity at nanoscale confinement. Besides the staircase current steps from surface blockage, discrete H2O2 oxidation and reduction current transients catalyzed by a single enzyme are also displayed and analyzed. The carbon nanopipette would increase the catalytic activities of enzymes and lead to a detectable current response, thus opening a new way to investigate the fundamental enzymatic mechanisms at the single enzyme level.
Collapse
Affiliation(s)
- Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Influence of conductive additives in a nano-impact electrochemistry study of single LiMn2O4 particles. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Shen X, Wang D. Electrochemical collision of single graphene oxide sheets at ultramicroelectrodes and its usage as substrate for Pt nanoparticle deposition. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaoyue Shen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Dengchao Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| |
Collapse
|
19
|
Qiu X, Tang H, Dong J, Wang C, Li Y. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Anal Chem 2022; 94:8202-8208. [PMID: 35642339 DOI: 10.1021/acs.analchem.2c00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle collisions have made many achievements in basic research, but challenges still exist due to their low collision frequency and selectivity in complex samples. In this work, we developed an "on-off-on" strategy based on Pt nanoparticles (PtNPs) that catalyze N2H4 collision signals on the surface of carbon ultramicroelectrodes and established a new method for the detection of miRNA21 with high selectivity and sensitivity. PtNPs catalyze the reduction of N2H4 on the surface of carbon ultramicroelectrodes to generate a stepped collision signal, which is in the "on" state. The single-stranded DNA paired with miRNA21 is coupled with PtNPs to form the complex DNA/PtNPs. Because PtNPs are covered by DNA, the electrocatalytic collision of N2H4 oxidation is inhibited. At this time, the signal is in the "off" state. When miRNA21 is added, the strong complementary pairing between miRNA21 and DNA destroys the electrostatic adsorption of DNA/PtNP conjugates and restores the electrocatalytic performance of PtNPs, and the signal is in the "on" state again. Based on this, a new method for detecting miRNA21 was established. It provides a new way for small-molecule sensing and has a wide range of applications in electroanalysis, electrocatalysis, and biosensing.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Jingyi Dong
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Chaohui Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
20
|
Bai YY, Feng ZT, Yang YJ, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Anal Chem 2021; 94:1302-1307. [PMID: 34957818 DOI: 10.1021/acs.analchem.1c04502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate size analysis of nanoparticles (NPs) is vital for nanotechnology. However, this cannot be realized based on conventional single-nanoparticle collision (SNC) because the current intensity, a thermodynamic parameter of SNC for sizing NPs, is always smaller than the theoretical value due to the effect of NP movements on the electrode surface. Herein, a size-dependent dynamic parameter of SNC, current lifetime, which refers to the time that the current intensity decays to 1/e of the original value, was originally utilized to distinguish differently sized NPs. Results showed that the current lifetime increased with NP size. After taking the current lifetime into account rather than the current intensity, the overlap rates for the peak-type current transients of differently sized Pt NPs (10 and 15 nm) and Au NPs (18 and 35 nm) reduced from 73 and 7% to 45 and 0%, respectively, which were closer to the theoretical values (29 and 0%). Hence, the proposed SNC dynamics-based method holds great potential for developing reliable electrochemical approaches to evaluate NP sizes accurately.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
21
|
|
22
|
Sánchez-Álvarez AO, Dick JE, Larios E, Cabrera CR. Anodic coulometry of zero-valent iron nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Huang L, Zhang J, Xiang Z, Wu D, Huang X, Huang X, Liang Z, Tang ZY, Deng H. Faradaic Counter for Liposomes Loaded with Potassium, Sodium Ions, or Protonated Dopamine. Anal Chem 2021; 93:9495-9504. [PMID: 34196181 DOI: 10.1021/acs.analchem.1c01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collisional electrochemistry between single particles and a biomimetic polarized micro-liquid/liquid interface has emerged as a novel and powerful analytical method for measurements of single particles. Using this platform, rapid detection of liposomes at the single particle level is reported herein. Individual potassium, sodium, or protonated dopamine-encapsulated (pristine or protein-decorated) liposomes collide and fuse with the polarized micro-liquid/liquid interface accompanying the release of ions, which are recorded as spike-like current transients of stochastic nature. The sizing and concentration of the liposomes can be readily estimated by quantifying the amount of encapsulated ions in individual liposomes via integrating each current spike versus time and the spike frequency, respectively. We call this type of nanosensing technology "Faradaic counter". The estimated liposome size distribution by this method is in line with the dynamic light scattering (DLS) measurements, implying that the quantized current spikes are indeed caused by the collisions of individual liposomes. The reported electrochemical sensing technology may become a viable alternative to DLS and other commercial nanoparticle analysis systems, for example, nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Linhan Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingcheng Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhipeng Xiang
- Key Laboratory on Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Di Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xinjian Huang
- Institute of Intelligent Perception, Midea Corporate Research Center, Foshan 528311, China
| | - Xizhe Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhen-Yu Tang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Haiqiang Deng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
24
|
Kong N, Guo J, Chang S, Pan J, Wang J, Zhou J, Liu J, Zhou H, Pfeffer FM, Liu J, Barrow CJ, He J, Yang W. Direct Observation of Amide Bond Formation in a Plasmonic Nanocavity Triggered by Single Nanoparticle Collisions. J Am Chem Soc 2021; 143:9781-9790. [PMID: 34164979 DOI: 10.1021/jacs.1c02426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The real-time observation of chemical bond formation at the single-molecule level is one of the great challenges in the fields of organic and biomolecular chemistry. Valuable information can be gleaned that is not accessible using ensemble-average measurements. Although remarkably sophisticated techniques for monitoring chemical reactions have been developed, the ability to detect the specific formation of a chemical bond in situ at the single-molecule level has remained an elusive goal. Amide bonds are routinely formed from the aminolysis of N-hydroxysuccinimide (NHS) esters by primary amines, and the protocol is widely used for the synthesis, cross-linking, and labeling of peptides and proteins. Herein, a plasmonic nanocavity was applied to study aminolysis reaction for amide bond formation, which was initiated by single nanoparticle collision events between suitably functionalized free-moving gold nanoparticles and a gold nanoelectrode in an aqueous buffer. By means of simultaneous surface enhanced Raman spectroscopy (SERS) and single-entity electrochemistry (EC) measurements, we have probed the dynamic evolution of amide bond formation in the aminolysis reaction with 10 s of millisecond time resolution. Hence, we demonstrate that single-entity EC-SERS is a valuable and sensitive technique by which chemical reactions can be studied at the single-molecule level.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Pan
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jianmei Wang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jianghao Zhou
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Liu
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Linyi University, Linyi, Shandong 276005, P. R. China
| | - Hong Zhou
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Linyi University, Linyi, Shandong 276005, P. R. China
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jingquan Liu
- College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
25
|
Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Fast electrodeposition of zinc onto single zinc nanoparticles. J Solid State Electrochem 2020; 24:2695-2702. [PMID: 33088212 PMCID: PMC7561586 DOI: 10.1007/s10008-020-04539-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/04/2022]
Abstract
The zinc deposition reaction onto metallic zinc has been investigated at the single particle level through the electrode-particle collision method in neutral solutions, and in respect of its dependence on the applied potential and the ionic strength of a sulphate-containing solution. Depending on the concentration of sulphate ions in solution, different amounts of metallic zinc were deposited on the single Zn nanoparticles. Specifically, insights into the electron transfer kinetics at the single particles were obtained, indicating an electrically early reactant-like transition state, which is consistent with the rate-determining partial de-hydration/de-complexation process. Such information on the reaction kinetics at the nanoscale is of vital importance for the development of more efficient and long-lasting nanostructured Zn-based negative electrodes for Zn-ion battery applications.
Collapse
|
27
|
Ai Q, Jin L, Gong Z, Liang F. Observing Host-Guest Interactions at Molecular Interfaces by Monitoring the Electrochemical Current. ACS OMEGA 2020; 5:10581-10585. [PMID: 32426616 PMCID: PMC7227043 DOI: 10.1021/acsomega.0c01077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 05/08/2023]
Abstract
Macrocyclic cucurbit[n]uril (CB[n]) molecules have triggered renewed interest because of their outstanding capabilities as host molecules to selectively interact with a wide range of small guest molecules. Here, CB[7]-based host-guest interactions were investigated for a guest-modified nanoelectrode by monitoring the electrochemical current. A ferrocene (Fc)-terminated molecule immobilized on a gold nanoelectrode (GNE) showed suitable affinity with CB[7] when the effective exposing area of the GNE was between 5.3 and 12 μm2 and the bias applied on the GNE was -500 mV. Monitoring the dynamics of nanoparticles (NPs) on a nanoelectrode provides new insights into the host-guest interactions at molecular interfaces.
Collapse
|
28
|
|
29
|
Fang H, Li X, Leng Y, Huang X, Xiong Y. Amphiphilic ligand modified gold nanocarriers to amplify lanthanide loading for ultrasensitive DELFIA detection of Cronobacter. Analyst 2020; 145:249-256. [DOI: 10.1039/c9an01945f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiolated ethylenediaminetetraacetic acid and thiolated acylhydrazine-terminated ligands modified gold nanoflowers as amplified nanocarriers to increase the Ln3+labeling ratio for improving the sensitivity of traditional DELFIA.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
30
|
High spatial resolution electrochemical biosensing using reflected light microscopy. Sci Rep 2019; 9:15196. [PMID: 31645591 PMCID: PMC6811617 DOI: 10.1038/s41598-019-50949-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
If the analyte does not only change the electrochemical but also the optical properties of the electrode/solution interface, the spatial resolution of an electrochemical sensor can be substantially enhanced by combining the electrochemical sensor with optical microscopy. In order to demonstrate this, electrochemical biosensors for the detection of hydrogen peroxide and glucose were developed by drop casting enzyme and redox polymer mixtures onto planar, optically transparent electrodes. These biosensors generate current signals proportional to the analyte concentration via a reaction sequence which ultimately changes the oxidation state of the redox polymer. Images of the interface of these biosensors were acquired using bright field reflected light microscopy (BFRLM). Analysis showed that the intensity of these images is higher when the redox polymer is oxidized than when it is reduced. It also revealed that the time needed for the redox polymer to change oxidation state can be assayed optically and is dependent on the concentration of the analyte. By combining the biosensor for hydrogen peroxide detection with BFRLM, it was possible to determine hydrogen peroxide in concentrations as low as 12.5 µM with a spatial resolution of 12 µm × 12 µm, without the need for the fabrication of microelectrodes of these dimensions.
Collapse
|
31
|
Miao R, Chen L, Shao L, Zhang B, Compton RG. Electron Transfer to Decorated Graphene Oxide Particles. Angew Chem Int Ed Engl 2019; 58:12549-12552. [DOI: 10.1002/anie.201907393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Ruiyang Miao
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| | - Lifu Chen
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| | - Lidong Shao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of Electric Power 2103 Pingliang Road Shanghai 200090 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Richard G. Compton
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| |
Collapse
|
32
|
Miao R, Chen L, Shao L, Zhang B, Compton RG. Electron Transfer to Decorated Graphene Oxide Particles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruiyang Miao
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| | - Lifu Chen
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| | - Lidong Shao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of Electric Power 2103 Pingliang Road Shanghai 200090 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Richard G. Compton
- Department of ChemistryPhysical & Theoretical Chemistry LaboratoryOxford University Oxford OX1 3QZ United Kingdom
| |
Collapse
|
33
|
Wang Y, Chou S, Zhang Z. Nanomaterials Innovation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902246. [PMID: 31397544 DOI: 10.1002/smll.201902246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Yongfei Wang
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2519, Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| |
Collapse
|