1
|
Huang C, Chen H, Luo J, Ma N, Li Z, Zeng XC, Fan J. Nanopore Identification of Polyglutamine Length via Cross-Slit Sensing. J Phys Chem Lett 2024; 15:11792-11800. [PMID: 39556328 DOI: 10.1021/acs.jpclett.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Nanopore sensing is now reshaping analytical proteomics with its simplicity, convenience, and high sensitivity. Determining the length of polyglutamine (polyQ) is crucial for the rapid screening of Huntington's disease. In this computational study, we present a cross-nanoslit detection approach to determine the polyQ length, where the nanoslit is carved within a two-dimensional (2D) in-plane heterostructure of graphene (GRA) and hexagonal boron nitride (hBN). We designed a heterostructure with an hBN strip embedded in the graphene sheet. With such a design, polyQ peptides can spontaneously and linearly stretch out on the hBN stripe. By tuning the strength of an external in-plane electric field, molecular transportation of polyQ peptides along the hBN stripe can be effectively regulated. Subsequent cross-nanoslit motion can be applied to record time-dependent electric signals. The signal features are then utilized to train the machine learning classification models. The machine-learning-assisted recognition enables accurate determination of the protein's length. This nanoslit-sensing method may offer theoretical guidance on 2D heterostructure design for the detection of polyQ peptide lengths and rapid screening of protein-related diseases.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huan Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jun Luo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
2
|
Si W, Chen J, Zhang Z, Wu G, Zhao J, Sha J. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Chemphyschem 2024; 25:e202400281. [PMID: 38686913 DOI: 10.1002/cphc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
3
|
Xu W, Ma C, Wang G, Fu F, Sha J. Trapping and recapturing single DNA molecules with pore-cavity-pore device. NANOTECHNOLOGY 2024; 35:335302. [PMID: 38772350 DOI: 10.1088/1361-6528/ad4e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Single-molecule detection technology is a technique capable of detecting molecules at the single-molecule level, characterized by high sensitivity, high resolution, and high specificity. Nanopore technology, as one of the single-molecule detection tools, is widely used to study the structure and function of biomolecules. In this study, we constructed a small-sized nanopore with a pore-cavity-pore structure, which can achieve a higher reverse capture rate. Through simulation, we investigated the electrical potential distribution of the nanopore with a pore-cavity-pore structure and analyzed the influence of pore size on the potential distribution. Accordingly, different pore sizes can be designed based on the radius of gyration of the target biomolecules, restricting their escape paths inside the chamber. In the future, nanopores with a pore-cavity-pore structure based on two-dimensional thin film materials are expected to be applied in single-molecule detection research, which provides new insights for various detection needs.
Collapse
Affiliation(s)
- Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Fangzhou Fu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
4
|
Si W, Zhang Z, Chen J, Wu G, Zhang Y, Sha J. Protein Deceleration and Sequencing Using Si 3N 4-CNT Hybrid Nanopores. Chemphyschem 2024; 25:e202300866. [PMID: 38267372 DOI: 10.1002/cphc.202300866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions and is of utmost importance in molecular diagnostics and medication development. Nanopores have become an effective tool for single molecule sensing, however, the weak charge and non-uniform charge distribution of protein make capturing and sensing very challenging, which poses a significant obstacle to the development of nanopore-based protein sequencing. In this study, to facilitate capturing of the unfolded protein, highly charged peptide was employed in our simulations, we found that the velocity of unfolded peptide translocating through a hybrid nanopore composed of silicon nitride membrane and carbon nanotube is much slower compared to bare silicon nitride nanopore, it is due to the significant interaction between amino acids and the surface of carbon nanotube. Moreover, by introducing variations in the charge states at the boundaries of carbon nanotube nanopores, the competition and combination of the electrophoretic and electroosmotic flows through the nanopores could be controlled, we then successfully regulated the translocation velocity of unfolded proteins through the hybrid nanopores. The proposed hybrid nanopore effectively retards the translocation velocity of protein through it, facilitates the acquisition of ample information for accurate amino acid identification.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
5
|
Yuan R, Zhang Z, Wu G, Zhang Y, Sha J, Chen Y, Si W. Unfolding of protein using MoS 2/SnS 2heterostructure for nanopore-based sequencing. NANOTECHNOLOGY 2024; 35:135501. [PMID: 38118165 DOI: 10.1088/1361-6528/ad177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions. However, proteins are usually folded in their native state and the mechanism of fast protein conformation transitions still remains unclear, which make protein sequencing challenging. Molecular dynamics simulations with accurate force field are now able to observe the entire folding/unfolding process, providing valuable insights into protein folding mechanisms. Given that proteins can be unfolded, nanopore technology shows great potential for protein sequencing. In this study, we proposed to use MoS2/SnS2heterostructures to firstly unfold proteins and then detect them by a nanopore in the heterostructural membrane. All-atom molecular dynamics simulations performed in this work provided rich atomic-level information for a comprehensive understanding of protein unfolding process and mechanism on the MoS2/SnS2heterostructure, it was found that the strong binding of protein to SnS2nanostripe and hydrogen bond breaking were the main reasons for unfolding the protein on the heterostructure. After the protein was fully unfolded, it was restrained on the nanostripe because of the affinity of protein to the SnS2nanostripe. Thus by integrating the proposed unfolding technique with nanopore technology, detection of linear unfolded peptide was realized in this work, allowing for the identification of protein components, which is essential for sequencing proteins in the near future.
Collapse
Affiliation(s)
- Runyi Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| |
Collapse
|
6
|
Liu C, Henning-Knechtel A, Österlund N, Wu J, Wang G, Gräslund RAO, Kirmizialtin S, Luo J. Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206232. [PMID: 37170734 DOI: 10.1002/smll.202206232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/01/2023] [Indexed: 05/13/2023]
Abstract
Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Anja Henning-Knechtel
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Jinming Wu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | | | - Serdal Kirmizialtin
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
7
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Hu G, Xi G, Yan H, Gao Z, Wu Z, Lu Z, Tu J. A molecular dynamics investigation of Taq DNA polymerase and its complex with a DNA substrate using a solid-state nanopore biosensor. Phys Chem Chem Phys 2022; 24:29977-29987. [PMID: 36472131 DOI: 10.1039/d2cp03993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins have a small volume difference by the diversity of amino acids, which make protein detection and identification a great challenge. Solid-state nanopore as label-free biosensors has attracted attention with high sensitivity. In this work, we investigated the Taq DNA polymerase before and after combining it with a DNA substrate on a solid-state nanopore through molecular dynamics. In simulation, we analyzed the contribution source of nanopore current blockage. In addition to considering the traditional physical exclusion volume model, the non-covalent interaction between the protein molecules and the pore wall also showed to affect the current blockage in the nanopore. When choosing pores of comparable size to protein molecules, the two states of Taq DNA polymerase produce differentiated non-covalent interactions with the pore wall, which enhanced the amplitude difference in current blockage. As a result, the two DNA polymerases can be distinguished through the distinct current blockage. However, when applying additional pulling force or increasing the pore size of the nanopore, the differences between the current blockages are not significant enough to distinguish. The introduction of the non-covalent interaction makes it clear to understand the current blockage differences, which guide the mechanism between molecules with similar structures or volumes.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
9
|
Si W, Yuan R, Wu G, Kan Y, Sha J, Chen Y, Zhang Y, Shen Y. Navigated Delivery of Peptide to the Nanopore Using In-Plane Heterostructures of MoS 2 and SnS 2 for Protein Sequencing. J Phys Chem Lett 2022; 13:3863-3872. [PMID: 35467868 DOI: 10.1021/acs.jpclett.2c00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impressive success of DNA sequencing using nanopores makes it possible to realize nanopore based protein sequencing. Well-controlled capture and linear movement of the protein are essential for accurate nanopore protein sequencing. Here, by taking advantage of different binding affinities of protein to two isomorphic materials, we theoretically designed a heterostructual platform for delivering the unfolded peptide to the nanopore sensing region. Due to the stronger binding between the peptide and SnS2 compared to MoS2, the peptide would adsorb to the SnS2 nanostripe and keep its threadlike conformation in the MoS2/SnS2/MoS2 heterostructure. Through switching the direction of the applied electric field in real time, the peptide was strategically driven to move along the designed path to the target nanopore. The ionic current blockades were also found to be different as the compositions of the peptide were changed, indicating the possibility for differentiating different peptides using this platform.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Runyi Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Wang C, Li N, Bian P, Li G, Yang J, Li Q, Jiao T. UV-response behavior and chiral structure determination of Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Li JG, Li MY, Li XY, Wu XY, Ying YL, Long YT. Full Width at Half Maximum of Nanopore Current Blockage Controlled by a Single-Biomolecule Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1188-1193. [PMID: 35019652 DOI: 10.1021/acs.langmuir.1c02900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A biological nanopore is one of the predominant single-molecule approaches as a result of its controllable single-biomolecule interface, which could reflect the "intrinsic" information on an individual molecule in a label-free way. Because the current blockage is normally treated as the most important parameter for nanopore identification of every single molecule, the fluctuation of current blockage for certain types of molecules, defined as full width at half maximum (fwhm) of current blockage, actually owns a dominant influence on nanopore resolution. Therefore, controlling the fwhm of current blockage of molecules is critical for the sensing capability of the nanopore. Here, taking an aerolysin nanopore as a model, by precisely controlling the functional group in this single-biomolecule interface, we could narrow the fwhm of nanopore current blockage for DNA identification and prolong the duration inside the nanopore. Moreover, a substantial correlation between fwhm of current blockage and duration is established, showing a non-monotonic variation. Besides, the mechanism is also clarified with studying the detailed current blockage events. This proposed correlation is further demonstrated to be applied uniformly across different mutant aerolysins for a certain DNA. This study proposes a new strategy for regulating molecular sensing from the duration of the analyte, which could guide the resolution of heterogeneity analysis using nanopores.
Collapse
Affiliation(s)
- Jun-Ge Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin-Yi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xue-Yuan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
12
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
13
|
Qiu H, Zhou W, Guo W. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. ACS NANO 2021; 15:18848-18864. [PMID: 34841865 DOI: 10.1021/acsnano.1c07960] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices. In this review, we discuss key advances in experimental and computational research into DNA sensing with nanopores built from 2D materials, focusing on both the ionic current and transverse current measurement schemes. Challenges associated with the development of 2D material nanopores toward DNA sequencing are further analyzed, concentrating on lowering the noise levels, slowing down DNA translocation, and inhibiting DNA fluctuations inside the pores. Finally, we overview future directions of research that may expedite the emergence of proof-of-concept DNA sequencing with 2D material nanopores.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
14
|
Saikia N. Probing the adsorption behavior and free energy landscape of single-stranded DNA oligonucleotides on single-layer MoS 2with molecular dynamics. NANOTECHNOLOGY 2021; 33:105602. [PMID: 34823233 DOI: 10.1088/1361-6528/ac3d61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Interfacing single-stranded DNA (ssDNA) with 2D transition metal dichalcogenides are important for numerous technological advancements. However, the molecular mechanism of this process, including the nature of intermolecular association and conformational details of the self-assembled hybrids is still not well understood. Here, atomistic molecular dynamics simulation is employed to study the distinct adsorption behavior of ssDNA on a single-layer MoS2in aqueous environment. The ssDNA sequences [T10, G10, A10, C10, U10, (GT)5, and (AC)5] are chosen on the basis that short ssDNA segments can undergo a spontaneous conformational change upon adsorption and allow efficient sampling of the conformational landscape. Differences in hybridization is attributed to the inherent molecular recognition ability of the bases. While the binding appears to be primarily driven by energetically favorable van der Waalsπ-stacking interactions, equilibrium structures are modulated by the ssDNA conformational changes. The poly-purines demonstrate two concurrently competingπ-stacking interactions: nucleobase-nucleobase (intramolecular) and nucleobase-MoS2(intermolecular). The poly-pyrimidines, on the other hand, reveal enhancedπ-stacking interactions, thereby maximizing the number of contacts. The results provide new molecular-level understanding of ssDNA adsorption on the MoS2surface and facilitate future studies in design of functional DNA/MoS2structure-based platforms for DNA sequencing, biosensing (optical, electrochemical, and electronic), and drug delivery.
Collapse
Affiliation(s)
- Nabanita Saikia
- School of Science, Navajo Technical University, Chinle Site, AZ 86503, United States of America
| |
Collapse
|
15
|
Si W, Yang H, Wu G, Zhang Y, Sha J. Velocity control of protein translocation through a nanopore by tuning the fraction of benzenoid residues. NANOSCALE 2021; 13:15352-15361. [PMID: 34498657 DOI: 10.1039/d1nr04492c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein sequencing is essential to unveil the mechanism of cellular processes that govern the function of living organisms, and which play a crucial role in the field of drug design and molecular diagnostics. Nanopores have been proved to be effective tools in single molecule sensing, but the fast translocation speed of a peptide through a nanopore is one of the major obstacles that hinders the development of nanopore-based protein sequencing. In this work, by using molecular dynamics simulations (MDS) it is found that the peptide containing more hydrophobic residues permeates slower through a molybdenum disulfide nanopore, which originates from the strong interaction between the membrane surface and the hydrophobic residues. The binding affinity is remarkable especially for benzenoid residues as they contain a hydrophobic aromatic ring that is composed of relatively non-polar C-C and C-H bonds. By tuning the fraction of benzenoid residues of the peptide, the velocity of the protein translocation through the nanopore is well controlled. The peptide with all the hydrophobic residues being benzenoid residues is found to translocate through the nanopore almost ten times slower than the one without any benzenoid residues, which is beneficial for gathering adequate information for precise amino acid identification.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Haojie Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| |
Collapse
|
16
|
Yang H, Saqib M, Hao R. Single-Entity Detection With TEM-Fabricated Nanopores. Front Chem 2021; 9:664820. [PMID: 34026729 PMCID: PMC8138203 DOI: 10.3389/fchem.2021.664820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Nanopore-based single-entity detection shows immense potential in sensing and sequencing technologies. Solid-state nanopores permit unprecedented detail while preserving mechanical robustness, reusability, adjustable pore size, and stability in different physical and chemical environments. The transmission electron microscope (TEM) has evolved into a powerful tool for fabricating and characterizing nanometer-sized pores within a solid-state ultrathin membrane. By detecting differences in the ionic current signals due to single-entity translocation through the nanopore, solid-state nanopores can enable gene sequencing and single molecule/nanoparticle detection with high sensitivity, improved acquisition speed, and low cost. Here we briefly discuss the recent progress in the modification and characterization of TEM-fabricated nanopores. Moreover, we highlight some key applications of these nanopores in nucleic acids, protein, and nanoparticle detection. Additionally, we discuss the future of computer simulations in DNA and protein sequencing strategies. We also attempt to identify the challenges and discuss the future development of nanopore-detection technology aiming to promote the next-generation sequencing technology.
Collapse
Affiliation(s)
| | | | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
Huang C, Zhu X, Li N, Ma X, Li Z, Fan J. Simultaneous Sensing of Force and Current Signals to Recognize Proteinogenic Amino Acids at a Single-Molecule Level. J Phys Chem Lett 2021; 12:793-799. [PMID: 33411544 DOI: 10.1021/acs.jpclett.0c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification ability of nanopore sequencing is severely hindered by the diversity of amino acids in a protein. To tackle this problem, a graphene nanoslit sensor is adopted to collect force and current signals to distinguish 20 residues. Extensive molecular dynamics simulations are performed on sequencing peptides under pulling force and applied electric field. Results show that the signals of force and current can be simultaneously collected. Tailoring the geometry of the nanoslit sensor optimizes signal differences between tyrosine and alanine residues. Using the tailored geometry, the characteristic signals of 20 types of residues are detected, enabling excellent distinguishability so that the residues are well-grouped by their properties and signals. The signals reveal a trend in which the larger amino acids have larger pulling forces and lower ionic currents. Generally, the graphene nanoslit sensor can be employed to simultaneously sense two signals, thereby enhancing the identification ability and providing an effective mode of nanopore protein sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
18
|
Liu SC, Ying YL, Li WH, Wan YJ, Long YT. Snapshotting the transient conformations and tracing the multiple pathways of single peptide folding using a solid-state nanopore. Chem Sci 2021; 12:3282-3289. [PMID: 34164097 PMCID: PMC8179386 DOI: 10.1039/d0sc06106a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental question relating to protein folding/unfolding is the time evolution of the folding of a protein into its precisely defined native structure. The proper identification of transition conformations is essential for accurately describing the dynamic protein folding/unfolding pathways. Owing to the rapid transitions and sub-nm conformation differences involved, the acquisition of the transient conformations and dynamics of proteins is difficult due to limited instrumental resolution. Using the electrochemical confinement effect of a solid-state nanopore, we were able to snapshot the transient conformations and trace the multiple transition pathways of a single peptide inside a nanopore. By combining the results with a Markov chain model, this new single-molecule technique is applied to clarify the transition pathways of the β-hairpin peptide, which shows nonequilibrium fluctuations among several blockage current stages. This method enables the high-throughput investigation of transition pathways experimentally to access previously obscure peptide dynamics, which is significant for understanding the folding/unfolding mechanisms and misfolding of peptides or proteins. A solid-state nanopore based method is described for resolving protein-folding-related problems via snapshotting the folding intermediates and characterizing the kinetics of a single peptide.![]()
Collapse
Affiliation(s)
- Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei-Hua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Department of Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
19
|
Proteome-wide Systems Genetics to Identify Functional Regulators of Complex Traits. Cell Syst 2021; 12:5-22. [PMID: 33476553 DOI: 10.1016/j.cels.2020.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Proteomic technologies now enable the rapid quantification of thousands of proteins across genetically diverse samples. Integration of these data with systems-genetics analyses is a powerful approach to identify new regulators of economically important or disease-relevant phenotypes in various populations. In this review, we summarize the latest proteomic technologies and discuss technical challenges for their use in population studies. We demonstrate how the analysis of correlation structure and loci mapping can be used to identify genetic factors regulating functional protein networks and complex traits. Finally, we provide an extensive summary of the use of proteome-wide systems genetics throughout fungi, plant, and animal kingdoms and discuss the power of this approach to identify candidate regulators and drug targets in large human consortium studies.
Collapse
|
20
|
Yan H, Zhang Z, Weng T, Zhu L, Zhang P, Wang D, Liu Q. Recognition of Bimolecular Logic Operation Pattern Based on a Solid-State Nanopore. SENSORS (BASEL, SWITZERLAND) 2020; 21:s21010033. [PMID: 33374742 PMCID: PMC7793508 DOI: 10.3390/s21010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/17/2023]
Abstract
Nanopores have a unique advantage for detecting biomolecules in a label-free fashion, such as DNA that can be synthesized into specific structures to perform computations. This method has been considered for the detection of diseased molecules. Here, we propose a novel marker molecule detection method based on DNA logic gate by deciphering a variable DNA tetrahedron structure using a nanopore. We designed two types of probes containing a tetrahedron and a single-strand DNA tail which paired with different parts of the target molecule. In the presence of the target, the two probes formed a double tetrahedron structure. As translocation of the single and the double tetrahedron structures under bias voltage produced different blockage signals, the events could be assigned into four different operations, i.e., (0, 0), (0, 1), (1, 0), (1, 1), according to the predefined structure by logic gate. The pattern signal produced by the AND operation is obviously different from the signal of the other three operations. This pattern recognition method has been differentiated from simple detection methods based on DNA self-assembly and nanopore technologies.
Collapse
Affiliation(s)
- Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Zhen Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Pang Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
- Correspondence:
| |
Collapse
|
21
|
Si W, Yu M, Wu G, Chen C, Sha J, Zhang Y, Chen Y. A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System. ACS NANO 2020; 14:15349-15360. [PMID: 33151055 DOI: 10.1021/acsnano.0c05779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular machines hold keys to performing intrinsic functions in living cells so that the organisms can work properly, and unveiling the mechanism of functional molecule machines as well as elucidating the dynamic process of interaction with their surrounding environment is an attractive pharmaceutical target for human health. Due to the limitations of searching and exploring all possible motors in human bodies, designing and constructing functional nanorobots is vital for meeting the fast-rising demand of revealing life science and related diagnostics. Here, we theoretically designed a nanoparticle-DNA assembled nanorobot that can move along a solid-state membrane surface. The nanorobot is composed of a nanoparticle and four single-stranded DNAs. Our molecular dynamics simulations show that electroosmosis could be the main power driving the movement of a nanorobot. After the DNA strands were one-to-one captured by the nanopores in the membrane, by tuning the surface charge density of each nanopore, we have theoretically shown that the electroosmosis coupled with electrophoresis can be used to drive the movement of the nanorobot in desired directions along the graphene membrane surface. It is believed that the well-controlled nanorobot will lead to many exciting applications, such as cargo delivery, nanomanipulation, and so on, if it is implemented in the near future.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Meng Yu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chang Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
22
|
Hu G, Fu J, Qiao Y, Meng H, Wang Z, Tu J, Lu Z. Molecular dynamics discrimination of the conformational states of calmodulin through solid-state nanopores. Phys Chem Chem Phys 2020; 22:19188-19194. [PMID: 32812567 DOI: 10.1039/d0cp02500c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a type of biological macromolecule, the conformation of proteins dynamically changes in a solution, which often results in a change in their function. However, traditional biological assays have significant drawbacks in detecting the conformation properties of proteins. Alternatively, nanopores have potential advantages in this area, which can detect protein in high throughput and without labelling. Herein, we investigated the translocation of calmodulins through silicon nitride nanopores using molecular dynamics (MD) simulation. Initially, the calmodulins were fixed in the nanopore. Distinguished blocked ionic currents were obtained between the two forms of calmodulin. Next, in the translocation simulations, a prominent difference in time resolution was easily found between the two states of calmodulin by using the appropriate voltage and comparable size of pore to protein, rp/rg→ 1, 4.5 nm (where rp is the protein radius and rg is the gyration radius). These simulations on the nanoscale are helpful for developing Ca2+-sensitive ion channels and nanodevices.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cecconi F, Chinappi M. Native-state fingerprint on the ubiquitin translocation across a nanopore. Phys Rev E 2020; 101:032401. [PMID: 32290013 DOI: 10.1103/physreve.101.032401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
We study the translocation of the ubiquitin molecule (Ubq) across a channel with a double section which constitutes a general feature of several transmembrane nanopores such as the α-hemolysin (αHL). Our purpose is to establish the structure-dependent character of the Ubq translocation pathway. This implies to find the correspondence, if any, between the translocational unfolding steps and the Ubq native state. For this reason, it is convenient to apply a coarse-grained computational approach, where the protein is described only by the backbone and the force field only exploits the information contained in the native state (in the spirit of Gō-like models, or native-centric models). The αHL-like pore is portrayed as two coaxial confining cylinders: a larger one for the vestibule and a narrower one for the barrel (or stem). Such simplified approach allows a large number of translocation events to be collected by limited computational resources. The co-translocational unfolding of Ubq is described via a few collective variables that characterize the translocation progress. We find two translocation intermediates (stalled conformations) that can be associated with specific unfolding stages. In particular, in the earliest step, the strand S5 unfolds and enters the pore. This step splits the native conformation into two structural clusters packing against each other in the Ubq fold. A second stall occurs when the hairpin of the N terminal engages the stem region.
Collapse
Affiliation(s)
- Fabio Cecconi
- Istituto dei Sistemi Complessi (CNR), Via Taurini 19, I-00185 Roma, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma I-00133, Italy
| |
Collapse
|
24
|
Si W, Sha J, Sun Q, He Z, Wu L, Chen C, Yu S, Chen Y. Shape characterization and discrimination of single nanoparticles using solid-state nanopores. Analyst 2020; 145:1657-1666. [PMID: 31922169 DOI: 10.1039/c9an01889a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Resistive pulse sensing with nanopores is expected to enable identification and analysis of nanoscale objects in ionic solutions. However, there is currently no remarkable method to characterize the three-dimensional shape of charged biomolecules or nanoparticles with low-cost and high-throughput. Here we demonstrate the sensing capability of solid-state nanopores for shape characterization of single nanoparticles by monitoring the ionic current blockades during their electrophoretic translocation through nanopores. By using nanopores that are a bit larger than the particles, shape characterization of both spherical and cubic silver nanoparticles is successfully realized due to their rapid rotation with respect to the pore axis, which is further validated by our all-atom molecular dynamics simulations. The single-molecule approach based on nanopores will allow people to measure the dimension and to characterize the shape of single nanoparticles or proteins simultaneously in real time, which is significant for its potential application in investigation of structural biology and proteomics in the near future.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu Y, Wu XY, Ying YL, Long YT. Simultaneous single-molecule discrimination of cysteine and homocysteine with a protein nanopore. Chem Commun (Camb) 2019; 55:9311-9314. [PMID: 31310244 DOI: 10.1039/c9cc04077c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discrimination between cysteine and homocysteine at the single-molecule level is achieved within a K238Q mutant aerolysin nanopore, which provides a confined space for high spatial resolution to identify the amino acid difference with a 5'-benzaldehyde poly(dA)4 probe. Our strategy allows potential detection and characterization of various amino acids and their modifications, and provides a crucial step towards developing nanopore protein sequencing devices.
Collapse
Affiliation(s)
- Yao Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Xue-Yuan Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|