1
|
Hu X, Kim K, Ali A, Kim H, Kang Y, Yoon J, Torati SR, Reddy V, Im MY, Lim B, Kim C. Magnetically Selective Versatile Transport of Microrobotic Carriers. SMALL METHODS 2024; 8:e2301495. [PMID: 38308323 DOI: 10.1002/smtd.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Indexed: 02/04/2024]
Abstract
Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.
Collapse
Affiliation(s)
- Xinghao Hu
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Mi-Young Im
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for X-ray Optics, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Byeonghwa Lim
- Department of Smart Sensor Engineering, Andong National University, Andong, 36729, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
2
|
Ali A, Kim H, Torati SR, Kang Y, Reddy V, Kim K, Yoon J, Lim B, Kim C. Magnetic Lateral Ladder for Unidirectional Transport of Microrobots: Design Principles and Potential Applications of Cells-on-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305528. [PMID: 37845030 DOI: 10.1002/smll.202305528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location. The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.
Collapse
Affiliation(s)
- Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Nanotechnology Research Center, SRKR Engineering College, Bhimavaram, Andhra Pradesh, 534204, India
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
3
|
Kim H, Kang Y, Lim B, Kim K, Yoon J, Ali A, Torati SR, Kim C. Tailoring matter orbitals mediated using a nanoscale topographic interface for versatile colloidal current devices. MATERIALS HORIZONS 2022; 9:2353-2363. [PMID: 35792087 DOI: 10.1039/d2mh00523a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.
Collapse
Affiliation(s)
- Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Abedini-Nassab R, Shourabi R. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection. Sci Rep 2022; 12:6380. [PMID: 35430583 PMCID: PMC9013386 DOI: 10.1038/s41598-022-10122-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Precise manipulation of microparticles have fundamental applications in the fields of lab-on-a-chip and biomedical engineering. Here, for the first time, we propose a fully operational microfluidic chip equipped with thin magnetic films composed of straight tracks and bends which precisely transports numerous single-particles in the size range of ~ 2.8–20 µm simultaneously, to certain points, synced with the general external three-axial magnetic field. The uniqueness of this design arises from the introduced vertical bias field that provides a repulsion force between the particles and prevents unwanted particle cluster formation, which is a challenge in devices operating in two-dimensional fields. Furthermore, the chip operates as an accurate sensor and detects low levels of proteins and DNA fragments, being captured by the ligand-functionalized magnetic beads, while lowering the background noise by excluding the unwanted bead pairs seen in the previous works. The image-processing detection method in this work allows detection at the single-pair resolution, increasing the sensitivity. The proposed device offers high-throughput particle transport and ultra-sensitive bio-detection in a highly parallel manner at single-particle resolution. It can also operate as a robust single-cell analysis platform for manipulating magnetized single-cells and assembling them in large arrays, with important applications in biology.
Collapse
|
5
|
Yoon J, Kang Y, Kim H, Torati SR, Kim K, Lim B, Kim C. Magnetophoretic Micro-Distributor for Controlled Clustering of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103579. [PMID: 34910376 PMCID: PMC8867205 DOI: 10.1002/advs.202103579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Cell clustering techniques are important to produce artificial cell clusters for in vitro models of intercellular mechanisms at the single-cell level. The analyses considering physical variables such as the shape and size of cells have been very limited. In addition, the precise manipulation of cells and control of the physical variables are still challenging. In this paper, a magnetophoretic device consisting of a trampoline micromagnet and active elements that enable the control of individual selective jumping motion and positioning of a micro-object is proposed. Based on a numerical simulation under various conditions, automatic separation or selective clustering of micro-objects according to their sizes is performed by parallel control and programmable manipulation. This method provides efficient control of the physical variables of cells and grouping of cells with the desired size and number, which can be a milestone for a better understanding of the intercellular dynamics between clustered cells at the single-cell level for future cell-on-chip applications.
Collapse
Affiliation(s)
- Jonghwan Yoon
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Yumin Kang
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Hyeonseol Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Sri Ramulu Torati
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Keonmok Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Byeonghwa Lim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - CheolGi Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| |
Collapse
|
6
|
Hu X, Yasa IC, Ren Z, Goudu SR, Ceylan H, Hu W, Sitti M. Magnetic soft micromachines made of linked microactuator networks. SCIENCE ADVANCES 2021; 7:7/23/eabe8436. [PMID: 34088661 PMCID: PMC8177716 DOI: 10.1126/sciadv.abe8436] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
Soft untethered micromachines with overall sizes less than 100 μm enable diverse programmed shape transformations and functions for future biomedical and organ-on-a-chip applications. However, fabrication of such machines has been hampered by the lack of control of microactuator's programmability. To address such challenge, we use two-photon polymerization to selectively link Janus microparticle-based magnetic microactuators by three-dimensional (3D) printing of soft or rigid polymer microstructures or links. Sequentially, we position each microactuator at a desired location by surface rolling and rotation to a desired position and orientation by applying magnetic field-based torques, and then 3D printing soft or rigid links to connect with other temporarily fixed microactuators. The linked 2D microactuator networks exhibit programmed 2D and 3D shape transformations, and untethered limbless and limbed micromachine prototypes exhibit various robotic gaits for surface locomotion. The fabrication strategy presented here can enable soft micromachine designs and applications at the cellular scales.
Collapse
Affiliation(s)
- Xinghao Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Immihan C Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Sandhya R Goudu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Kim H, Lim B, Yoon J, Kim K, Torati SR, Kim C. Magnetophoretic Decoupler for Disaggregation and Interparticle Distance Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100532. [PMID: 34194951 PMCID: PMC8224445 DOI: 10.1002/advs.202100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 05/17/2023]
Abstract
The manipulation of superparamagnetic beads has attracted various lab on a chip and magnetic tweezer platforms for separating, sorting, and labeling cells and bioentities, but the irreversible aggregation of beads owing to magnetic interactions has limited its actual functionality. Here, an efficient solution is developed for the disaggregation of magnetic beads and interparticle distance control with a magnetophoretic decoupler using an external rotating magnetic field. A unique magnetic potential energy distribution in the form of an asymmetric magnetic thin film around the gap is created and tuned in a controlled manner, regulated by the size ratio of the bead with a magnetic pattern. Hence, the aggregated beads are detached into single beads and transported in one direction in an array pattern. Furthermore, the simultaneous and accurate spacing control of multiple magnetic bead pairs is performed by adjusting the angle of the rotating magnetic field, which continuously changes the energy well associated with a specific shape of the magnetic patterns. This technique offers an advanced solution for the disaggregation and controlled manipulation of beads, can allow new possibilities for the enhanced functioning of lab on a chip and magnetic tweezers platforms for biological assays, intercellular interactions, and magnetic biochip systems.
Collapse
Affiliation(s)
- Hyeonseol Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Byeonghwa Lim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Jonghwan Yoon
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Keonmok Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Sri Ramulu Torati
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - CheolGi Kim
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| |
Collapse
|
8
|
Goudu SR, Kim H, Hu X, Lim B, Kim K, Torati SR, Ceylan H, Sheehan D, Sitti M, Kim C. Mattertronics for programmable manipulation and multiplex storage of pseudo-diamagnetic holes and label-free cells. Nat Commun 2021; 12:3024. [PMID: 34021137 PMCID: PMC8139950 DOI: 10.1038/s41467-021-23251-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Manipulating and separating single label-free cells without biomarker conjugation have attracted significant interest in the field of single-cell research, but digital circuitry control and multiplexed individual storage of single label-free cells remain a challenge. Herein, by analogy with the electrical circuitry elements and electronical holes, we develop a pseudo-diamagnetophoresis (PsD) mattertronic approach in the presence of biocompatible ferrofluids for programmable manipulation and local storage of single PsD holes and label-free cells. The PsD holes conduct along linear negative micro-magnetic patterns. Further, eclipse diode patterns similar to the electrical diode can implement directional and selective switching of different PsD holes and label-free cells based on the diode geometry. Different eclipse heights and junction gaps influence the switching efficiency of PsD holes for mattertronic circuitry manipulation and separation. Moreover, single PsD holes are stored at each potential well as in an electrical storage capacitor, preventing multiple occupancies of PsD holes in the array of individual compartments due to magnetic Coulomb-like interaction. This approach may enable the development of large programmable arrays of label-free matters with high throughput, efficiency, and reliability as multiplex cell research platforms.
Collapse
Affiliation(s)
- Sandhya Rani Goudu
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Hyeonseol Kim
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | - Xinghao Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Byeonghwa Lim
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | - Kunwoo Kim
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | - Sri Ramulu Torati
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| | - CheolGi Kim
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Klingbeil F, Block F, Sajjad U, Holländer RB, Deshpande S, McCord J. Evaluating and forecasting movement patterns of magnetically driven microbeads in complex geometries. Sci Rep 2020; 10:8761. [PMID: 32472020 PMCID: PMC7260204 DOI: 10.1038/s41598-020-65380-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The manipulation of superparamagnetic microbeads for lab-on-a-chip applications relies on the steering of microbeads across an altering stray field landscape on top of soft magnetic parent structures. Using ab initio principles, we show three-dimensional simulations forecasting the controlled movement of microbeads. Simulated aspects of microbead behaviour include the looping and lifting of microbeads around a magnetic circular structure, the flexible bead movement along symmetrically distributed triangular structures, and the dragging of magnetic beads across an array of exchange biased magnetic microstripes. The unidirectional motion of microbeads across a string of oval elements is predicted by simulations and validated experimentally. Each of the simulations matches the experimental results, proving the robustness and accuracy of the applied numerical method. The computer experiments provide details on the particle motion not accessible by experiments. The simulation capabilities prove to be an essential part for the estimation of future lab-on-chip designs.
Collapse
Affiliation(s)
- Finn Klingbeil
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Findan Block
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Umer Sajjad
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Rasmus B Holländer
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sughosh Deshpande
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Jeffrey McCord
- Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany.
| |
Collapse
|