1
|
Stüwe L, Geiger M, Röllgen F, Heinze T, Reuter M, Wessling M, Hecht S, Linkhorst J. Continuous Volumetric 3D Printing: Xolography in Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306716. [PMID: 37565596 DOI: 10.1002/adma.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Additive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual-color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet-induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up-scaling the continuous production, currently reaching production rates up to 1.75 mm3 s-1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade-off between high production rates and high resolution in light-based additive manufacturing.
Collapse
Affiliation(s)
- Lucas Stüwe
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Geiger
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Franz Röllgen
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Thorben Heinze
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489, Berlin, Germany
| | - John Linkhorst
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| |
Collapse
|
2
|
Gao L, Sun L, Qiu Y, Jiang Y, Luo H, Wang X, Yu H. Fabrication of hollow microtube arrays based on a femtosecond laser double-pulse multiphoton polymerization. OPTICS LETTERS 2023; 48:5495-5498. [PMID: 37910686 DOI: 10.1364/ol.502919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
Microtubes with widely varied dimensions and materials have great prospects in functional devices applied in microoptics, microrobot, and biomedicine. However, the fabrication of vertically protruding hollow microtubes with high diameter-to-thickness ratio is challenging and few reported. Femtosecond laser two-photon polymerization can solve this problem via point-by-point scanning or SLM-based parallel processing, but the low efficiency limits its high throughput fabrication. Here, we report a novel, to the best of our knowledge, femtosecond laser double-pulse multiphoton polymerization approach for high efficiency fabrication of hollow microtube arrays. We established a two-aperture laser beam reshaping system to generate a circular beam via two rounds of Fresnel diffraction. Based on the unique laser energy distribution, hollow microtubes with high diameter-to-thickness ratio can be generated by two successively laser pulses exposure, which can improve the fabrication efficiency significantly. With the optimized parameters, we can achieve repeatable and uniform microtube array fabrication in large scale, and the yield can be 94.9%. Defocus testing showed that the proposed approach has a high range of focusing tolerance. The proposed microtube fabrication approach is meaningful in providing some enlightenment for researchers in the field of microfabrication.
Collapse
|
3
|
Ma ZC, Fan J, Wang H, Chen W, Yang GZ, Han B. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300469. [PMID: 36855777 DOI: 10.1002/smll.202300469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.
Collapse
Affiliation(s)
- Zhuo-Chen Ma
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiahao Fan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Hesheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Weidong Chen
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Yang C, Yu Y, Zhao Y, Shang L. Bioinspired Jellyfish Microparticles from Microfluidics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0034. [PMID: 37040286 PMCID: PMC10076059 DOI: 10.34133/research.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Nonspherical particles have attracted increasing interest because of their shape anisotropy. However, the current methods to prepare anisotropic particles suffer from complex generation processes and limited shape diversity. Here, we develop a piezoelectric microfluidic system to generate complex flow configurations and fabricate jellyfish-like microparticles. In this delicate system, the piezoelectric vibration could evolve a jellyfish-like flow configuration in the microchannel and the in situ photopolymerization could instantly capture the flow architecture. The sizes and morphologies of the particles are precisely controlled by tuning the piezoelectric and microfluidic parameters. Furthermore, multi-compartmental microparticles with a dual-layer structure are achieved by modifying the injecting channel geometry. Moreover, such unique a shape endows the particles with flexible motion ability especially when stimuli-responsive materials are incorporated. On the basis of that, we demonstrate the capability of the jellyfish-like microparticles in highly efficient adsorption of organic pollutants under external control. Thus, it is believed that such jellyfish-like microparticles are highly versatile in potential applications and the piezoelectric-integrated microfluidic strategy could open an avenue for the creation of such anisotropic particles.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yunru Yu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Luoran Shang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Li D, Shang X, Wu W, Li X, Xu Z, Li L, Hong M, Chen X, Luo J. Unprecedented Self-Powered Visible-Infrared Dual-Modal Photodetection Induced by a Bulk Photovoltaic Effect in a Polar Perovskite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5608-5614. [PMID: 35044742 DOI: 10.1021/acsami.1c21262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Visible-infrared dual-modal light harvesting is crucial for various optoelectronic devices, particularly for solar cells and photodetectors. Hybrid metal-halide perovskites are recently emerging for visible-infrared dual-modal photodetection owing to their prominent multiphoton absorption and carrier transport performances. However, they work relying on an applied external power source or complicated heterostructures. It is still a difficult task to realize visible-infrared dual-modal self-powered photoresponse induced by a bulk photovoltaic effect (BPVE) in a single material. In this work, we constructed a polar multilayered perovskite, (Br-BA)2(EA)2Pb3Br10 (BEP; EA+ = ethylammonium, and Br-BA+ = 4-brombutylammonium). Notably, the polar feature endows BEP with a BPVE. In addition, BEP presents a distinctive two-photon activity arising from the layered quantum-well structure. Benefitting from these striking characteristics, self-powered visible-infrared dual-modal photodetection is realized, and a direct self-powered detection of 800 nm light with a photocurrent of 2.1 nA cm-2 is achieved. This work will inspire the design of desired photoelectric materials with a BPVE for high-performance self-powered visible-infrared dual-modal photodetection.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhijin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
6
|
Song R, Cho S, Shin S, Kim H, Lee J. From shaping to functionalization of micro-droplets and particles. NANOSCALE ADVANCES 2021; 3:3395-3416. [PMID: 36133725 PMCID: PMC9419121 DOI: 10.1039/d1na00276g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
The structure of microdroplet and microparticle is a critical factor in their functionality, which determines the distribution and sequence of physicochemical reactions. Therefore, the technology of precisely tailoring their shape is requisite for implementing the user demand functions in various applications. This review highlights various methodologies for droplet shaping, classified into passive and active approaches based on whether additional body forces are applied to droplets to manipulate their functions and fabricate them into microparticles. The passive approaches cover batch emulsification, solvent evaporation and diffusion, micromolding, and microfluidic methods. In active approaches, the external forces, such as electrical and magnetic fields or optical lithography, are applied to microdroplets. Special attention is also given to latest technologies using microdroplets and microparticles, especially in the fields of biological, optical, robotic, and environmental applications. Finally, this review aims to address the advantages and disadvantages of the introduced approaches and suggests the direction for further development in this field.
Collapse
Affiliation(s)
- Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seongsu Cho
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seonghun Shin
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University Seoul 02841 Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
- Institute of Quantum Biophysics, Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
7
|
Chizari S, Udani S, Farzaneh A, Stoecklein D, Carlo DD, Hopkins JB. Scanning two-photon continuous flow lithography for the fabrication of multi-functional microparticles. OPTICS EXPRESS 2020; 28:40088-40098. [PMID: 33379542 DOI: 10.1364/oe.410090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In this work, we demonstrate the high-throughput fabrication of 3D microparticles using a scanning two-photon continuous flow lithography (STP-CFL) technique in which microparticles are shaped by scanning the laser beam at the interface of laminar co-flows. The results demonstrate the ability of STP-CFL to manufacture high-resolution complex geometries of cell carriers that possess distinct regions with different functionalities. A new approach is presented for printing out-of-plane features on the microparticles. The approach eliminates the use of axial scanning stages, which are not favorable since they induce fluctuations in the flowing polymer media and their scanning speed is slower than the speed of galvanometer mirror scanners.
Collapse
|
8
|
Nanofabrication of synthetic nanoporous geomaterials: from nanoscale-resolution 3D imaging to nano-3D-printed digital (shale) rock. Sci Rep 2020; 10:21596. [PMID: 33299052 PMCID: PMC7725825 DOI: 10.1038/s41598-020-78467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in imaging have made it possible to view nanometer and sub-nanometer structures that are either synthesized or that occur naturally. It is believed that fluid dynamic and thermodynamic behavior differ significantly at these scales from the bulk. From a materials perspective, it is important to be able to create complex structures at the nanometer scale, reproducibly, so that the fluid behavior may be studied. New advances in nanoscale-resolution 3D-printing offer opportunities to achieve this goal. In particular, additive manufacturing with two-photon polymerization allows creation of intricate structures. Using this technology, a creation of the first nano-3D-printed digital (shale) rock is reported. In this paper, focused ion beam-scanning electron microscopy (FIB-SEM) nano-tomography image dataset was used to reconstruct a high-resolution digital rock 3D model of a Marcellus Shale rock sample. Porosity of this 3D model has been characterized and its connected/effective pore system has been extracted and nano-3D-printed. The workflow of creating this novel nano-3D-printed digital rock 3D model is described in this paper.
Collapse
|
9
|
Yoon J, Park W. Microsized 3D Hydrogel Printing System using Microfluidic Maskless Lithography and Single Axis Stepper Motor. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4310-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Linnartz CJ, Wolff HJM, Breisig HF, Alders M, Wessling M. About a Membrane with Microfluidic Porous-Wall Channels of Cylindrical Shape for Droplet Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9935-9943. [PMID: 32794714 DOI: 10.1021/acs.langmuir.0c01647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A low-energy emulsification process is hollow-fiber emulsification. In this process, the lumen diameter of the membrane mostly determines the droplet size. To gain smaller droplets, approaches for downsizing the inner diameter of membranes have to be carried out. In this work, we describe a new method for the fabrication of parallel microfluidic porous-wall channels of a homogeneous cylindrical shape with lumen diameters down to 7 μm. Parallel and symmetric porous-wall channels are induced into polyvinylidene fluoride membranes during the casting process. The technique comprises liquid-induced phase separation and phase-separation micromolding using thin glass and carbon fibers as molds and an in-house designed tool to position the fibers. The channel positioning and alignment are verified within this work. We show and investigate the droplet formation in these porous-wall channels via hollow-fiber emulsification. The formed droplets are very small in diameter and size distribution. The droplet formation at varying flow rates and channel diameters is examined in detail. Moreover, an area of sufficient operating conditions is given using Weber and capillary numbers. As a numbering-up approach, we show the simultaneous formation of spherical droplets in two parallel channels. With the proposed membrane fabrication using micromolding, we push the downscaling approach of hollow-fiber emulsification to lower micron ranges of the channel diameter. With these small channels, droplets with a diameter down to 25 μm were produced, which are more attractive for most applications.
Collapse
Affiliation(s)
- Christian J Linnartz
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
- RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Hanna J M Wolff
- RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Hans F Breisig
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
- RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Michael Alders
- RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Matthias Wessling
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
- RWTH Aachen University, Aachener Verfahrenstechnik-Chemical Process Engineering, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
11
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Tang J, Qiu G, Cao X, Yue Y, Zhang X, Schmitt J, Wang J. Self-aligned 3D microlenses in a chip fabricated with two-photon stereolithography for highly sensitive absorbance measurement. LAB ON A CHIP 2020; 20:2334-2342. [PMID: 32458914 DOI: 10.1039/d0lc00235f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Absorbance measurement is a widely used method to quantify the concentration of an analyte. The integration of absorbance analysis in microfluidic chips could significantly reduce the sample consumption and contribute to the system miniaturization. However, the sensitivity and limit of detection (LoD) of analysis in microfluidic chips with conventional configuration need improvements due to the limited optical pathway and unregulated light propagation. In this work, a 3D-microlens-incorporating microfluidic chip (3D-MIMC) with a greatly extended detection channel was innovatively fabricated using two-photon stereolithography. The fabrication was optimized with a proposed hierarchical modular printing strategy. Due to the incorporation of 3D microlenses, the light coupling efficiency and the signal-to-noise ratio (SNR) were respectively improved approximately 9 and 4 times. An equivalent optical path length (EOL) of 62.9 mm was achieved in a 3.7 μl detection channel for testing tartrazine samples. As a result, the sensitivity and LoD of the 3D-MIMC assay were correspondingly improved by one order of magnitude, compared with those of the 96-well plate assay. Notably, the 3D-MIMC has the potential to be integrated into a general microanalysis platform for multiple applications.
Collapse
Affiliation(s)
- Jiukai Tang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lohaus J, Stockmeier F, Surray P, Lölsberg J, Wessling M. What are the microscopic events during membrane backwashing? J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Wolff HJM, Linkhorst J, Göttlich T, Savinsky J, Krüger AJD, de Laporte L, Wessling M. Soft temperature-responsive microgels of complex shape in stop-flow lithography. LAB ON A CHIP 2020; 20:285-295. [PMID: 31802080 DOI: 10.1039/c9lc00749k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.
Collapse
Affiliation(s)
- Hanna J M Wolff
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - John Linkhorst
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Tim Göttlich
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Johann Savinsky
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Andreas J D Krüger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura de Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany and RWTH Aachen University, ITMC - Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany. and DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|