1
|
Li Y, Chen P, Zhang X, Yan Z, Xu T, Xie Z, Xiu X, Chen D, Zhao H, Shi Y, Zhang R, Zheng Y. The Study on the Lasing Modes Modulated by the Dislocation Distribution in the GaN-Based Microrod Cavities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2228. [PMID: 37570546 PMCID: PMC10421333 DOI: 10.3390/nano13152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Low-threshold lasing under pulsed optical pumping is demonstrated in GaN-based microrod cavities at room temperature, which are fabricated on the patterned sapphire substrates (PSS). Because the distribution of threading dislocations (TDs) is different at different locations, a confocal micro-photoluminescence spectroscopy (μ-PL) was performed to analyze the lasing properties of the different diameter microrods at the top of the triangle islands and between the triangle islands of the PSS substrates, respectively. The μ-PL results show that the 2 μm-diameter microrod cavity has a minimum threshold of about 0.3 kW/cm2. Whispering gallery modes (WGMs) in the microrod cavities are investigated by finite-difference time-domain simulation. Combined with the dislocation distribution in the GaN on the PSS substrates, it is found that the distribution of the strongest lasing WGMs always moves to the region with fewer TDs. This work reveals the connection between the lasing modes and the dislocation distribution, and can contribute to the development of low-threshold and high-efficiency GaN-based micro-lasers.
Collapse
Affiliation(s)
| | - Peng Chen
- Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (Y.L.); (X.Z.); (Z.Y.); (T.X.); (Z.X.); (X.X.); (D.C.); (H.Z.); (Y.S.); (R.Z.); (Y.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bai B, Zhang C, Dou Y, Kong L, Wang L, Wang S, Li J, Zhou Y, Liu L, Liu B, Zhang X, Hadar I, Bekenstein Y, Wang A, Yin Z, Turyanska L, Feldmann J, Yang X, Jia G. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem Soc Rev 2023; 52:318-360. [PMID: 36533300 DOI: 10.1039/d2cs00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.
Collapse
Affiliation(s)
- Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Yongjiang Dou
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Jun Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Yi Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ido Hadar
- Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT 2601, Australia
| | - Lyudmila Turyanska
- Faculty of Engineering, The University of Nottingham, Additive Manufacturing Building, Jubilee Campus, University Park, Nottingham NG7 2RD, UK
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, Munich 80539, Germany
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
3
|
Yao X, Wang Y, Wang L, Wang X, Bao Y. The Dissociation of Exciton During the Lasing of a Single CsPbBr 3 Microplate. J Phys Chem Lett 2022; 13:10851-10857. [PMID: 36382934 DOI: 10.1021/acs.jpclett.2c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, the lasing of a single CsPbBr3 microplate (MP) fabricated with chemical vapor deposition (CVD) is investigated from the viewpoint of exciton dissociation characterized with steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL). It is confirmed that the lasing performance is disturbed by the dissociation of excitons. The increase of lasing threshold with temperature originates from the dissociation of free excitons (FEs) to localized carriers (LCs), and the lasing failure is mostly ascribed to the dissociation of FEs to free carriers (FCs). The working temperature of micro/nanolasers based on metal halide perovskites (MHPs) could be raised up to the temperature determined by exciton binding energy while the laser heating effect is dealt with well. These findings advance our understanding on the photophysics of the lasing behaviors of micro/nanocavities based on MHPs and help us promote their performance by having better thermal management.
Collapse
Affiliation(s)
- Xiuru Yao
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Yu Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Lu Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| | - Yongjun Bao
- State Key Laboratory of Superhard Materials & School of Physics, Jilin University, Changchun130012, China
| |
Collapse
|
4
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating Unexpected High Charge-Carrier Mobility and Low-Threshold Lasing Action in an Organic Semiconductor. Angew Chem Int Ed Engl 2022; 61:e202200791. [PMID: 35298062 DOI: 10.1002/anie.202200791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2 V-1 s-1 and low-threshold lasing characteristic of 9.43 μJ cm-2 and 9.93 μJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108 s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianxin Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Ziyi Xie
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating unexpected high charge‐carrier mobility and low‐threshold lasing action in an organic semiconductor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Liu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Xianxin Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Can Gao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Chenguang Li
- Henan University Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering ,Collaborative Innovation Centre of Nano Functional Materials and Applications CHINA
| | - yingshuang Zheng
- tian jin da xue: Tianjin University Tian jin Key Laboratory of Molecular Optoelectronic Department of Chemistry, Insititue of Molecular Aggregation Science CHINA
| | - Yang Li
- Shenyang University Normal College CHINA
| | - Ziyi Xie
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Deyang Ji
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectrinic Sciences, Department of Chemistry, Institute of Molecular Aggregation Sciencs CHINA
| | - Xinfeng Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechlolgy CHINA
| | - Xiaotao Zhang
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,Institute of Molecular Aggregation Science CHINA
| | - Liqiang Li
- Tianjin University Tianjin Key Laboratory of Mecular Optoelectronic Sciences,Deportment of Chemistry, Institute of Melecular Aggregation Science CHINA
| | - Qian Peng
- University of Chinese Academy of Sciences School of Computer and Control Engineering: University of the Chinese Academy of Sciences School of Computer Science and Technology School of Chemical Science CHINA
| | - Wenping Hu
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University &Collaborative Innovation Center od Chemical Science and Enginering CHINA
| | - Huanli Dong
- Institute of Chemistry, Chinese Academy of Sciences Key laboratory of organic solids zhongguancun 100190 Beijing CHINA
| |
Collapse
|
6
|
Ma H, Wu X, Du W, Zhao L, Zhong Y, Chen S, Gao P, Yue S, Zhang Q, Liu W, Liu X. Edge Raman enhancement at layered PbI 2platelets induced by laser waveguide effect. NANOTECHNOLOGY 2021; 33:035203. [PMID: 34627132 DOI: 10.1088/1361-6528/ac2e5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
As a two-dimensional (2D) layered semiconductor, lead iodide (PbI2) has been widely used in optoelectronics owing to its unique crystal structure and distinctive optical and electrical properties. A comprehensive understanding of its optical performance is essential for further application and progress. Here, we synthesized regularly shaped PbI2platelets using the chemical vapor deposition method. Raman scattering spectroscopy of PbI2platelets was predominantly enhanced when the laser radiated at the edge according to Raman mapping spectroscopy. Combining the outcome of polarized Raman scattering spectroscopy and finite-difference time domain simulation analysis, the Raman enhancement was proven to be the consequence of the enhancement effects inherent to the high refractive index contrast waveguide, which is naturally formed in well-defined PbI2platelets. Because of the enlarged excited area determined by the increased propagation length of the laser in the PbI2platelet formed waveguide, the total Raman enhancements are acquired rather than a localized point enhancement. Finally, the Raman enhancement factor is directly related to the thickness of the PbI2platelet, which further confirms the waveguide-enhanced edge Raman. Our investigation of the optical properties of PbI2platelets offers reference for potential 2D layered-related optoelectronic applications.
Collapse
Affiliation(s)
- Heyi Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Shulin Chen
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Peng Gao
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wei Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Zhan X, Xu FF, Zhou Z, Yan Y, Yao J, Zhao YS. 3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104418. [PMID: 34337797 DOI: 10.1002/adma.202104418] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Indexed: 05/27/2023]
Abstract
3D laser displays play an important role in next-generation display technologies owing to the ultimate visual experience they provide. Circularly polarized (CP) laser emissions, featuring optical rotatory power and invariability under rotations, are attractive for 3D displays due to potential in enhancing contrast ratio and comfortability. However, the lack of pixelated self-emissive CP microlaser arrays as display panels hinders the implementation of 3D laser displays. Here, full-color 3D laser displays are demonstrated based on CP lasing with inkjet-printed cholesteric liquid crystal (CLC) arrays as display panels. Individual CP lasers are realized by embedding fluorescent dyes into CLCs with their left-/right-handed helical superstructures serving as distributed feedback microcavities, bringing in ultrahigh circular polarization degree values (gem = 1.6). These CP microlaser pixels exhibit excellent far-field color-rendering features and a relatively large color gamut for high-fidelity displays. With these printed CLC red-green-blue (RGB) microlaser arrays serving as display panels, proof-of-concept full-color 3D laser displays are demonstrated via delivering images with orthogonal CP laser emissions into one's left and right eyes. These results provide valuable enlightenment for the development of 3D laser displays.
Collapse
Affiliation(s)
- Xiuqin Zhan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fa-Feng Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Tian X, Wang L, Li W, Lin Q, Cao Q. Whispering Gallery Mode Lasing from Perovskite Polygonal Microcavities via Femtosecond Laser Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16952-16958. [PMID: 33792289 DOI: 10.1021/acsami.0c21824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic halide perovskites have excellent intrinsic properties, such as long carrier lifetime, high photoluminescence quantum yield, and high gain, in whispering gallery mode (WGM) cavities by facile vapor self-assembly or solution process, which make them competitive for high-performance microlasers. However, the performance of perovskite-based microlasers is severely limited by the fabrication of microcavities, which results in poor reproducibility and uncontrolled morphology. Herein, we explore a reproducible method which combined thermal co-evaporation with femtosecond (fs) laser direct writing for formamidinium lead iodide (FAPbI3) perovskite polygon-shaped WGM microcavities. The microlasers pumped with the fs laser had a low threshold of 4.0-12.3 μJ/cm2 and narrow full width at half-maximum of 0.62-1.05 nm. Moreover, size- and shape-dependent WGM lasing performances are also investigated systematically. The results prove that FAPbI3 polygonal microcavities can serve as promising WGM lasers and have great potential for practical optoelectronic applications.
Collapse
Affiliation(s)
- Xiaoyu Tian
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Wei Li
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qianqian Lin
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qiang Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Sun D, Zhang Y, Wang D, Song W, Liu X, Pang J, Geng D, Sang Y, Liu H. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. LIGHT, SCIENCE & APPLICATIONS 2020; 9:197. [PMID: 33303741 PMCID: PMC7729400 DOI: 10.1038/s41377-020-00434-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 05/20/2023]
Abstract
Recently, integrated photonics has attracted considerable interest owing to its wide application in optical communication and quantum technologies. Among the numerous photonic materials, lithium niobate film on insulator (LNOI) has become a promising photonic platform owing to its electro-optic and nonlinear optical properties along with ultralow-loss and high-confinement nanophotonic lithium niobate waveguides fabricated by the complementary metal-oxide-semiconductor (CMOS)-compatible microstructure engineering of LNOI. Furthermore, ferroelectric domain engineering in combination with nanophotonic waveguides on LNOI is gradually accelerating the development of integrated nonlinear photonics, which will play an important role in quantum technologies because of its ability to be integrated with the generation, processing, and auxiliary detection of the quantum states of light. Herein, we review the recent progress in CMOS-compatible microstructure engineering and domain engineering of LNOI for integrated lithium niobate photonics involving photonic modulation and nonlinear photonics. We believe that the great progress in integrated photonics on LNOI will lead to a new generation of techniques. Thus, there remains an urgent need for efficient methods for the preparation of LNOI that are suitable for large-scale and low-cost manufacturing of integrated photonic devices and systems.
Collapse
Affiliation(s)
- Dehui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China.
| | - Yunwu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Dongzhou Wang
- Jinan Institute of Quantum Technology, Jinan, 250101, China
| | - Wei Song
- CETC Deqing Huaying Electronics Co., Ltd., Huzhou, 313200, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Deqiang Geng
- Crystrong Photoelectric Technology Co., Ltd., Jinan, 250100, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China.
- Jinan Institute of Quantum Technology, Jinan, 250101, China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
10
|
Zhou Z, Qiao C, Wang K, Wang L, Liang J, Peng Q, Wei Z, Dong H, Zhang C, Shuai Z, Yan Y, Zhao YS. Experimentally Observed Reverse Intersystem Crossing‐Boosted Lasing. Angew Chem Int Ed Engl 2020; 59:21677-21682. [DOI: 10.1002/anie.202008940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kang Wang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Lu Wang
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Jie Liang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Peng
- Key Laboratory of Organic Solids and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhiyou Wei
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuang Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhigang Shuai
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Yongli Yan
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Zhou Z, Qiao C, Wang K, Wang L, Liang J, Peng Q, Wei Z, Dong H, Zhang C, Shuai Z, Yan Y, Zhao YS. Experimentally Observed Reverse Intersystem Crossing‐Boosted Lasing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kang Wang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Lu Wang
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Jie Liang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Peng
- Key Laboratory of Organic Solids and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhiyou Wei
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuang Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhigang Shuai
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Yongli Yan
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Qiao C, Zhang C, Zhou Z, Dong H, Du Y, Yao J, Zhao YS. A Photoisomerization‐Activated Intramolecular Charge‐Transfer Process for Broadband‐Tunable Single‐Mode Microlasers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuxiang Du
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
|
14
|
Qiao C, Zhang C, Zhou Z, Dong H, Du Y, Yao J, Zhao YS. A Photoisomerization-Activated Intramolecular Charge-Transfer Process for Broadband-Tunable Single-Mode Microlasers. Angew Chem Int Ed Engl 2020; 59:15992-15996. [PMID: 32519468 DOI: 10.1002/anie.202007361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 01/14/2023]
Abstract
Miniaturized lasers with high spectral purity and wide wavelength tunability are crucial for various photonic applications. Here we propose a strategy to realize broadband-tunable single-mode lasing based on a photoisomerization-activated intramolecular charge-transfer (ICT) process in coupled polymer microdisk cavities. The photoisomerizable molecules doped in the polymer microdisks can be quantitatively transformed into a kind of laser dye with strong ICT character by photoexcitation. The gain region was tailored over a wide range through the self-modulation of the optically activated ICT isomers. Meanwhile, the resonant modes shifted with the photoisomerization because of a change in the effective refractive index of the polymer microdisk cavity. Based on the synergetic modulation of the optical gain and microcavity, we realized the broadband tuning of the single-mode laser. These results offer a promising route to fabricate broadband-tunable microlasers towards practical photonic integrations.
Collapse
Affiliation(s)
- Chan Qiao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxiang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Li Q, Li C, Shang Q, Zhao L, Zhang S, Gao Y, Liu X, Wang X, Zhang Q. Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode? J Chem Phys 2019; 151:211101. [DOI: 10.1063/1.5127946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Qi Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chun Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qiuyu Shang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Liyun Zhao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shuai Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xinfeng Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xina Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Research Center for Wide Gap Semiconductor, Peking University, Beijing 100871, China
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|