1
|
Konwar K, Chaturvedi A, Chakraborty R, Sharma P, Kumar D, Kaushik SD, Babu PD, Mukhopadhyay R, Lodha S, Sen D, Deb P. Interacting Trimagnetic Ensembles for Enhanced Magnetic Resonance Transverse Relaxivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15281-15292. [PMID: 38989856 DOI: 10.1021/acs.langmuir.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An ensemble of nanosystems can be considered to improve magnetic resonance imaging (MRI) transverse relaxivity. Herein, an interacting superparamagnetic competing structure of an isotropic-anisotropic trimagnetic hybrid nanosystem, γ-Fe2O3@δ-MnO2@NiFe2O4, is considered for MRI relaxivity exploration. The interacting superparamagnetic system reveals fascinating dynamic magnetic behavior, where flower-shaped two-dimensional flakes are decorated over nanoparticles. The hybrid nanosystem exhibits modulated shape anisotropy with spin blocking and energy barrier broadening, which help in achieving faster MR transverse relaxivity. The hierarchical architecture ensemble of the trimagnetic landscape shows effective MR transverse relaxivity with a transverse (r2)/longitudinal (r1) relaxivity of 61.5 and potential cell viability. The competing trimagnetic system with regulated activation energy is found to be the underlying reason for such signal enhancement in MRI contrast efficiency. Hence, this study displays a novel pathway correlating MR transverse relaxivity with dynamic magnetic behavior and competing landscape of hierarchical trimagnetic ensembles.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | | | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
2
|
Lin J, Ma X, Li A, Akakuru OU, Pan C, He M, Yao C, Ren W, Li Y, Zhang D, Cao Y, Chen T, Wu A. Multiple valence states of Fe boosting SERS activity of Fe 3O 4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging. FUNDAMENTAL RESEARCH 2024; 4:858-867. [PMID: 39156566 PMCID: PMC11330100 DOI: 10.1016/j.fmre.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment. Herein, an optimized strategy for designing a Fe3O4-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering (SERS) and magnetic resonance imaging (MRI) is introduced. Excellent SERS activity of ultrasmall Fe3O4 nanoparticles (NPs) was discovered, and a 5 × 10-9 M limit of detection for crystal violet molecules was successfully obtained. The high-efficiency interfacial photon-induced charge transfer in Fe3O4 NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe, which was observed using ultraviolet-visible diffuse reflectance spectroscopy. Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe3O4 NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination. The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Fe3O4-based bioprobe with high sensitivity and good specificity. Notably, Fe3O4-based bioprobes simultaneously exhibited T1 -weighted MRI contrast enhancement with an active targeting capability for tumors in vivo. To the best of our knowledge, this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro, which has been previously realized only using semiconductor-metal complex materials. The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform, which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anran Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beihang University, Beijing 100191, China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Meng He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Dinghu Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
3
|
Wu L, Lu X, Lu Y, Shi M, Guo S, Feng J, Yang S, Xiong W, Xu Y, Yan C, Shen Z. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T 1-Weighted Contrast Agent for Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308547. [PMID: 37988646 DOI: 10.1002/smll.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.
Collapse
Affiliation(s)
- Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Meng Shi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
4
|
Zhang Q, Yin R, Guan G, Liu H, Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1929. [PMID: 37752407 DOI: 10.1002/wnan.1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Qinpeng Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rui Yin
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, China
| | - Guoqiang Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Huiyi Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Guosheng Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
5
|
Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T 1 -Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302856. [PMID: 37596716 DOI: 10.1002/smll.202302856] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) based T2 -weighted magnetic resonance imaging (MRI) contrast agents (CAs) are liver-specific with good biocompatibility, but have been withdrawn from the market and replaced with Eovist (Gd-EOB-DTPA) due to their inherent limitations (e.g., susceptibility to artifacts, high magnetic moment, dark signals, long processing time of T2 imaging, and long waiting time for patients after administration). Without the disadvantages of Gd-chelates and MIONs, the recently emerging exceedingly small MIONs (ES-MIONs) (<5 nm) are promising T1 CAs for MRI. However, there are rare review articles focusing on ES-MIONs for T1 -weighted MRI. Herein, the recent progress of ES-MIONs, including synthesis methods (the current basic synthesis methods and improved methods), surface modifications (artificial polymers, natural polymers, zwitterions, and functional protein), T1 -MRI visual strategies (structural remodeling, reversible self-assemblies, metal ions doped, T1 /T2 dual imaging modes, and PET/MRI strategy), and imaging-guided cancer therapy (chemotherapy, gene therapy, ferroptosis therapy, photothermal therapy, photodymatic therapy, radiotherapy, immuotherapy, sonodynamic therapy, and multimode therapy), is summarized. The detailed description of synthesis methods and applications of ES-MIONs in this review is anticipated to attract extensive interest from researchers in different fields and promote their participation in the establishment of ES-MIONs based nanoplatforms for tumor theranostics.
Collapse
Affiliation(s)
- Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
6
|
Guo S, Xiong W, Zhu J, Feng J, Zhou R, Fan Q, Zhang Q, Li Z, Yang J, Zhou H, Yi P, Feng Y, Yang S, Qiu X, Xu Y, Shen Z. A STING pathway-activatable contrast agent for MRI-guided tumor immunoferroptosis synergistic therapy. Biomaterials 2023; 302:122300. [PMID: 37659110 DOI: 10.1016/j.biomaterials.2023.122300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-β and IFN-γ.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Ruilong Zhou
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Qianqian Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
7
|
Sun M, Chen G, Ouyang S, Chen C, Zheng Z, Lin P, Song X, Chen H, Chen Y, You Y, Tao J, Lin B, Zhao P. Magnetic Resonance Diagnosis of Early Triple-Negative Breast Cancer Based on the Ionic Covalent Organic Framework with High Relaxivity and Long Retention Time. Anal Chem 2023; 95:8267-8276. [PMID: 37191204 DOI: 10.1021/acs.analchem.3c00307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Patients with triple-negative breast cancer (TNBC) have dismal prognoses due to the lack of therapeutic targets and susceptibility to lymph node (LN) metastasis. Therefore, it is essential to develop more effective approaches to identify early TNBC tissues and LNs. In this work, a magnetic resonance imaging (MRI) contrast agent (Mn-iCOF) was constructed based on the Mn(II)-chelated ionic covalent organic framework (iCOF). Because of the porous structure and hydrophilicity, the Mn-iCOF has a high longitudinal relaxivity (r1) of 8.02 mM-1 s-1 at 3.0 T. For the tumor-bearing mice, a lower dose (0.02 mmol [Mn]/kg) of Mn-iCOF demonstrated a higher signal-to-noise ratio (SNR) value (1.8) and longer retention time (2 h) compared to a 10-fold dose of commercial Gd-DOTA (0.2 mmol [Gd]/kg). Moreover, the Mn-iCOF can provide continuous and significant MR contrast for the popliteal LNs within 24 h, allowing for accurate evaluation and dissection of LNs. These excellent MRI properties of the Mn-iCOF may open new avenues for designing more biocompatible MRI contrast agents with higher resolutions, particularly in the diagnosis of TNBC.
Collapse
Affiliation(s)
- Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Guanjun Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Xiangfei Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| |
Collapse
|
8
|
Arosio P, Orsini F, Brero F, Mariani M, Innocenti C, Sangregorio C, Lascialfari A. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core-shell nanoparticles: a brief review of the situation. Dalton Trans 2023; 52:3551-3562. [PMID: 36880505 DOI: 10.1039/d2dt03387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In this perspective article, we present a short selection of some of the most significant case studies on magnetic nanoparticles for potential applications in nanomedicine, mainly magnetic resonance. For almost 10 years, our research activity focused on the comprehension of the physical mechanisms on the basis of the nuclear relaxation of magnetic nanoparticles in the presence of magnetic fields; taking advantage of the insights gathered over this time span, we report on the dependence of the relaxation behaviour on the chemico-physical properties of magnetic nanoparticles and discuss them in full detail. In particular, a critical review is carried out on the correlations between their efficiency as contrast agents in magnetic resonance imaging and the magnetic core of magnetic nanoparticles (mainly iron oxides), their size and shape, and the coating and solvent used for making them biocompatible and well dispersible in physiological media. Finally, the heuristic model proposed by Roch and coworkers is presented, as it was extensively adopted to describe most of the experimental data sets. The large amount of data analyzed allowed us to highlight both the advantages and limitations of the model.
Collapse
Affiliation(s)
- Paolo Arosio
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesco Orsini
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesca Brero
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lascialfari
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Liu J, Yu X, Ting HJ, Wang X, Xu S, Wang Y, Zhang S, Wang JW, Liu B. Myeloperoxidase-Sensitive T1 and T2 Switchable MR Imaging for Diagnosis of Nonalcoholic Steatohepatitis. ACS NANO 2023; 17:3324-3333. [PMID: 36773320 DOI: 10.1021/acsnano.2c06233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the critical stage in the development of nonalcoholic fatty liver disease (NAFLD) from simple and reversible steatosis to irreversible cirrhosis and even hepatocellular carcinoma (HCC). Thus, the diagnosis of NASH is important for preventing the progress of NAFLD into a fatal condition. The oxidative enzyme myeloperoxidase (MPO), which is mostly produced by polymorphonuclear neutrophil granulocytes (NEU), has been identified as a key player in lipid peroxidation in inflamed tissues. Considering that the expression of MPO was much higher in NASH than in the nonalcoholic fatty liver (NAFL) with steatosis, we designed a nanoparticle platform based on ultrasmall iron oxide (USIO) nanoparticles to realize MPO-sensitive NASH diagnosis. After modification of USIO nanoparticles with amphiphilic poly(ethylene glycol) (PEG) and conjugation with 5-hydroxytryptamine (5HT), a physiological substrate for MPO, the final nanocomposite (USIO-DA-PEG-5HT) revealed MPO-mediated aggregation at the inflammatory site of NASH. Meanwhile, the intrinsic T1-weighted magnetic resonance (MR) signal of dispersed USIO-DA-PEG-5HT nanoparticles diminishes, while the T2-weighted MR signal is amplified owing to the aggregation effect. These USIO-DA-PEG-5HT nanoprobes offer great potential for improving NASH MR imaging diagnostic accuracy and sensitivity compared to existing molecular MR contrast agents with a single imaging modality.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuanbo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
10
|
Du H, Wang Q, Liang Z, Li Q, Li F, Ling D. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. NANOSCALE 2022; 14:17483-17499. [PMID: 36413075 DOI: 10.1039/d2nr04979a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrahigh-field magnetic resonance imaging (UHF-MRI) has been attracting tremendous attention in biomedical imaging owing to its high signal-to-noise ratio, superior spatial resolution, and fast imaging speed. However, at UHF-MRI, there is a lack of proper imaging probes that can impart superior imaging sensitivity of disease lesions because conventional contrast agents generally produce pronounced susceptibility artifacts and induce very strong T2 decay effects, thus hindering satisfactory imaging performance. This review focused on the recent development of high-performance nanoprobes that can improve the sensitivity and specificity of UHF-MRI. Firstly, the contrast enhancement mechanism of nanoprobes at UHF-MRI has been elucidated. In particular, the strategies for modulating nanoprobe performance, including size effects, metal alloying and magnetic-dopant effects, surface effects, and stimuli-response regulation, have been comprehensively discussed. Furthermore, we illustrate the remarkable advances in the design of UHF-MRI nanoprobes for medical diagnosis, such as early-stage primary tumor and metastasis imaging, angiography, and dynamic monitoring of biosignaling factors in vivo. Finally, we provide a summary and outlook on the development of cutting-edge UHF-MRI nanoprobes for advanced biomedical imaging.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Qilong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| |
Collapse
|
11
|
Sarikhani A, Alamzadeh Z, Beik J, Irajirad R, Mirrahimi M, Pirhajati Mahabadi V, Kamrava SK, Ghaznavi H, Khoei S. Ultrasmall Fe3O4 and Gd2O3 hybrid nanoparticles for T1-weighted MR imaging of cancer. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractGadolinium-based contrast agents (GdCAs) have been the most frequently used T1-weighted magnetic resonance imaging (MRI) contrast agents for decades. However, they have serious disadvantages such as low longitudinal relaxivity value (r1) and high dose associated-nephrotoxicity that restrict their wide applications. These emphasize the need for an ideal stable and biocompatible T1-weighted CA with high contrast enhancement performance. Here, we propose a wet-chemical synthesis technique to form a nanocomposite consisting of ultrasmall iron oxide nanoparticles (US-IO) and Gd2O3 hybrid nanoparticles stabilized with dextran (FG-HNPs) for T1-weighted MR imaging. Relaxometry study showed that FG-HNPs have a high r1 value (42.28 mM−1S−1) and low relaxivity ratio (r2/r1: 1.416) at 3.0T. In vivo MRI contrast enhancement factor (ΔSNR) for FG-HNPs (257.025 ± 17.4%) was found to be 1.99-fold higher than US-IO (129.102 ± 15%) and 3.35-fold higher than Dotarem (76.71 ± 14.2%) as routinely used T1-weighted CA. The cytotoxicity assay and histological examination confirmed the biocompatibility of FG-HNPs. The biodistribution study, transmission electron microscopy (TEM) and Prussian blue (PB) staining of tumor tissue proved the effective tumor localization of FG-HNPs. Therefore, FG-HNPs can be suggested as a promising CA for T1-weighted MRI of tumors by virtue of their remarkable relaxivities and high biocompatibility.
Collapse
|
12
|
Lu Y, Liang Z, Feng J, Huang L, Guo S, Yi P, Xiong W, Chen S, Yang S, Xu Y, Li Y, Chen X, Shen Z. Facile Synthesis of Weakly Ferromagnetic Organogadolinium Macrochelates-Based T 1 -Weighted Magnetic Resonance Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205109. [PMID: 36377432 PMCID: PMC9811448 DOI: 10.1002/advs.202205109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/14/2022] [Indexed: 05/08/2023]
Abstract
To surmount the major concerns of commercial small molecule Gd chelates and reported Gd-based contrast agents (GBCAs) for magnetic resonance imaging (MRI), a new concept of organogadolinium macrochelates (OGMCs) constructed from the coordination between Gd3+ and macromolecules is proposed. A library of macromolecules were screened for Gd3+ coordination, and two candidates [i.e., poly(acrylic acid) (PAA), and poly(aspartic acid) (PASP)] succeeded in OGMC formation. Under optimized synthesis conditions, both Gd-PAA12 and Gd-PASP11 OGMCs are outstanding T1 -weighted CAs owing to their super high r1 values (> 50 mm-1 s-1 , 3.0 T) and ultralow r2 /r1 ratios (< 1.6, 3.0 T). The ferromagnetism of OGMCs is completely different from the paramagnetism of commercial and reported GBCAs. The ferromagnetism is very weak (Ms < 1.0 emu g-1 ) leading to a low r2 , which is preferred for T1 MRI. Gd3+ is not released from the OGMC Gd-PAA12 and Gd-PASP11, ensuring biosafety for in vivo applications. The safety and T1 -weighted MRI efficiencies of the OGMC Gd-PAA12 and Gd-PASP11 are tested in cells and mice. The synthesis method of the OGMCs is facile and easy to be scaled up. Consequently, the OGMC Gd-PAA12 and Gd-PASP11 are superior T1 -weighted CAs with promising translatability to replace the commercial Gd chelates.
Collapse
Affiliation(s)
- Yudie Lu
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhiyu Liang
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jie Feng
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Lin Huang
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shuai Guo
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Peiwei Yi
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wei Xiong
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Sijin Chen
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Sugeun Yang
- Department of Biomedical ScienceBK21 FOUR Program in Biomedical Science and EngineeringInha University College of MedicineIncheon22212South Korea
| | - Yikai Xu
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yan Li
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical EngineeringClinical Imaging Research CentreNanomedicine Translational Research ProgramYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119228Singapore
| | - Zheyu Shen
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
13
|
Thi Thuy Khue N, Thanh Tam LT, Thanh Dung N, The Tam L, Xuan Chung N, Thi Ngoc Linh N, Dinh Vinh N, Minh Quy B, Trong Lu L. Water‐dispersible Gadolinium Oxide Nanoplates as an Effective Positive Magnetic Resonance Imaging Contrast Agent. ChemistrySelect 2022. [DOI: 10.1002/slct.202202062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Thi Thuy Khue
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Haiphong University of Medicine and Pharmacy 72A Nguyen Binh Khiem, Ngo Quyen Hai Phong Vietnam
| | - Le Thi Thanh Tam
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Ngo Thanh Dung
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Le The Tam
- Vinh University 182 Le Duan Vinh City Vietnam
| | - Nguyen Xuan Chung
- Department of Physics Hanoi University of Mining and Geology 18 Pho Vien, Bac Tu Liem Hanoi Vietnam
| | - Nguyen Thi Ngoc Linh
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Nguyen Dinh Vinh
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Bui Minh Quy
- Thai Nguyen University of Sciences Tan Thinh Ward, Thai Nguyen City 25000 Thai Nguyen Vietnam
| | - Le Trong Lu
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| |
Collapse
|
14
|
Lu X, Zhou H, Liang Z, Feng J, Lu Y, Huang L, Qiu X, Xu Y, Shen Z. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging of tumors. J Nanobiotechnology 2022; 20:350. [PMID: 35908057 PMCID: PMC9338602 DOI: 10.1186/s12951-022-01562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis, and contrast agents (CAs) can improve the sensitivity MRI. To overcome the problems of commercial Gd chelates-based T1 CAs, commercial magnetic iron oxide nanoparticles (MIONs)-based T2 CAs, and reported exceedingly small MIONs (ES-MIONs)-based T1 CAs, in this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility using poly (aspartic acid) (PASP) as a stabilizer for T1-weighted MRI of tumors. After optimization of the synthesis conditions, the final obtained ES-MION9 with 3.7 nm of diameter has a high r1 value (7.0 ± 0.4 mM-1 s-1) and a low r2/r1 ratio (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility because of the excessive -COOH from the stabilizer PASP. The pharmacokinetics and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger capability of enhancing the MRI contrast comparing with the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 with excellent water-dispersibility is an ideal T1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.
Collapse
Affiliation(s)
- Xuanyi Lu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Zhiyu Liang
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Yudie Lu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Lin Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
- Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
15
|
Fluorescently Labeled Gadolinium Ferrate/Trigadolinium Pentairon(III) Oxide Nanoparticles: Synthesis, Characterization, In Vivo Biodistribution, and Application for Visualization of Myocardial Ischemia-Reperfusion Injury. MATERIALS 2022; 15:ma15113832. [PMID: 35683129 PMCID: PMC9181512 DOI: 10.3390/ma15113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Various gadolinium compounds have been proposed as contrasting agents for magnetic resonance imaging (MRI). In this study, we suggested a new synthesis method of gadolinium ferrate/trigadolinium pentairon(III) oxide nanoparticles (GF/TPO NPs). The specific surface area of gadolinium ferrate (GdFeO3) and trigadolinium pentairon(III) oxide (Gd3Fe5O12) nanoparticles was equal to 42 and 66 m2/g, respectively. The X-ray diffraction analysis confirmed that the synthesized substances were GdFeO3 and Gd3Fe5O12. The gadolinium content in the samples was close to the theoretically calculated value. The free gadolinium content was negligible. Biodistribution of the GF/TPO NPs was studied in rats by fluorescent imaging and Fe2+/Fe3+ quantification demonstrating predominant accumulation in such organs as lung, kidney, and liver. We showed in the in vivo rat model of myocardial ischemia–reperfusion injury that GF/TPO NPs are able to target the area of myocardial infarction as evidenced by the significantly greater level of fluorescence. In perspective, the use of fluorescently labeled GF/TPO NPs in multimodal imaging may provide basis for high-resolution 3D reconstruction of the infarcted heart, thereby serving as unique theranostic platform.
Collapse
|
16
|
Lu Y, Feng J, Liang Z, Lu X, Guo S, Huang L, Xiong W, Chen S, Zhou H, Ma X, Xu Y, Qiu X, Wu A, Chen X, Shen Z. A tumor microenvironment dual responsive contrast agent for contrary contrast-magnetic resonance imaging and specific chemotherapy of tumors. NANOSCALE HORIZONS 2022; 7:403-413. [PMID: 35212333 DOI: 10.1039/d1nh00632k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of magnetic resonance imaging (MRI) contrast agents (CAs) is still one of the research hotspots due to the inherent limitations of T1- or T2-weighted CAs and T1/T2 dual-mode CAs. To dramatically enhance the MRI contrast between tumors and normal tissues, we propose a new concept of contrary contrast-MRI (CC-MRI), whose specific definition is that CC-MRI CAs present a positive or negative signal at normal tissues, but show contrary signals at diseased tissues. To realize CC-MRI of tumors, we designed and developed a tumor microenvironment (TME) dual responsive CA (i.e., SA-FeGdNP-DOX@mPEG), which is almost not responsive under normal physiological conditions, but highly responsive to the acidic and reductive TME. Our SA-FeGdNP-DOX@mPEG shows a negative MRI signal under normal physiological conditions due to the high r2 value (336.9 mM-1 s-1) and high r2/r1 ratio (18.4), but switches to a positive MRI signal in the TME because of the high r1 value (20.32 mM-1 s-1) and low r2/r1 ratio (7.2). Our TME dual responsive SA-FeGdNP-DOX@mPEG significantly enhanced the contrast of MR images between tumors and livers, and the ΔSNR difference reached 501%. In addition, our SA-FeGdNP-DOX2@mPEG2 with tumor targetability and controlled DOX release responding to the TME was also used for tumor-specific chemotherapy with reduced side effects.
Collapse
Affiliation(s)
- Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Zhiyu Liang
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Sijin Chen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| |
Collapse
|
17
|
Jiang Z, Xia B, Ren F, Bao B, Xing W, He T, Li Z. Boosting Vascular Imaging-Performance and Systemic Biosafety of Ultra-Small NaGdF 4 Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Co-Polymer. SMALL METHODS 2022; 6:e2101145. [PMID: 35107219 DOI: 10.1002/smtd.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Revealing the anatomical structures, functions, and distribution of vasculature via contrast agent (CA) enhanced magnetic resonance imaging (MRI) is crucial for precise medical diagnosis and therapy. The clinically used MRI CAs strongly rely on Gd-chelates, which exhibit low T1 relaxivities and high risks of nephrogenic systemic fibrosis (NSF) for patients with renal dysfunction. It is extremely important to develop high-performance and safe CAs for MRI. Herein, it is reported that ultra-small NaGdF4 nanoparticles (UGNs) can serve as an excellent safe MRI CA via surface engineering with rationally designed novel hydrophilic block co-polymer (BPn ). By optimizing the polymer molecular weights, the polymer-functionalized UGNs (i.e., UGNs-BP14 ) are obtained to exhibit remarkably higher relaxivity (11.8 mm-1 s-1 at 3.0 T) than Gd-DTPA (3.6 mm-1 s-1 ) due to their ultracompact and abundant hydrophilic surface coating. The high performance of UGNs-BP14 enables us to sensitively visualize microvasculature with a small diameter of ≈0.17 mm for up to 2 h, which is the thinnest blood vessel and the longest time window for low field (1.0 T) MR angiography ever reported, and cannot be achieved by using the clinically used Gd-DTPA under the same conditions. More importantly, renal clearable UGNs-BP14 show lower risks of inducing NSF in comparison with Gd-DTPA due to their negligible release of Gd3+ ions after modification with the novel hydrophilic block copolymer. The study presents a novel avenue for boosting imaging-performance and systemic biosafety of UGNs as a robust MRI CA with great potential in precise diagnosis of vasculature-related diseases.
Collapse
Affiliation(s)
- Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bolin Bao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Wei Xing
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Liu Y, Dai Y, Li H, Duosiken D, Tang N, Sun K, Tao K. Revisiting the factors influencing the magnetic resonance contrast of Gd 2O 3 nanoparticles. NANOSCALE ADVANCES 2021; 4:95-101. [PMID: 36132966 PMCID: PMC9418219 DOI: 10.1039/d1na00612f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 06/16/2023]
Abstract
Gadolinium oxide nanoparticles (GONs) have the potential to be one of the best candidates for the contrast agents of magnetic resonance imaging. Even though the influence of parameters on the relaxation has been substantially demonstrated, the variation of the r 1 of GONs with a similar structure and surface chemistry implied our limited understanding. We herein synthesized GONs with adjustable size, shape, and crystallinity, modified them with a series of molecules with different acidities, and recorded their r 1 values and imaging contrast. Our results showed that the isoelectric point could be regarded as an indicator of the relaxation covering the influence of both surface modification and size, which highlighted the impact of protons dissociated from the contrast agents. We further showed that the nanoparticles with lower crystallinity possess higher relaxivity, and this phenomenon manifested significantly under a low field. Our work clarified that the longitudinal relaxivity of Gd2O3 nanoparticles is sensitively dependent on the numbers of H+ generated from the surface and in the environment, which may shed light on developing high-performance nanoparticulate T 1 contrast agents.
Collapse
Affiliation(s)
- Yanyue Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Haifeng Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dida Duosiken
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
19
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
20
|
LI ZH, QIAN K, Ozioma-Udochukwu A, PAN CS, MA XH, HAN YY, ZHENG JJ, CUI P, WEI G, SHEN ZY, WU AG. A Smart Glutathione and H2O2 Dual-Responsive Signal Inversion Magnetic Resonance Imaging Contrast Agent for Tumor Diagnosis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Poon K, Lu Z, De Deene Y, Ramaswamy Y, Zreiqat H, Singh G. Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. NANOSCALE ADVANCES 2021; 3:4052-4061. [PMID: 36132835 PMCID: PMC9419237 DOI: 10.1039/d0na00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/16/2023]
Abstract
Among various magnetic nanoparticles, manganese oxide nanoparticles are considered as established T 1 magnetic resonance imaging (MRI) contrast agents for preclinical research. The implications of their degradation properties and use as therapeutic carriers in drug delivery systems have not been explored. In addition, how the chemical composition and size of manganese oxide nanoparticles, as well as the surrounding environment, influence their degradation and MRI contrast properties (T 1 vs. T 2) have not been studied in great detail. A fundamental understanding of their characteristic properties, such as degradation, is highly desirable for developing simultaneous diagnosis and therapeutic solutions. Here, we demonstrate how the precursor type and reaction environment affect the size and chemical composition of manganese oxide nanoparticles and evaluate their influence on the nanoparticle degradability and release of the drug l-3,4-dihydroxyphenylalanine (l-dopa). The results show that the degradation rate (and the associated release of drug l-dopa molecules) of manganese oxide nanoparticles depends on their size, composition and the surrounding environment (aqueous or biometric fluid). The dependence of MRI relaxivities of manganese oxide nanoparticles on the size, chemical composition and nanoparticle degradation in water is also established. A preliminary cell viability study reveals the cytocompatible properties of l-dopa functionalized manganese oxide nanoparticles. Overall, this work provides new insights into smartly designed manganese oxide nanoparticles with multitasking capabilities to target bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Kingsley Poon
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Zufu Lu
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Yves De Deene
- Department of Engineering, The Biomedical Engineering Laboratory, Macquarie University Sydney 2109 Australia
| | - Yogambha Ramaswamy
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Hala Zreiqat
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Gurvinder Singh
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| |
Collapse
|
22
|
Xu C, Li Z, Akakuru OU, Pan C, Zou R, Zheng J, Wu A. Maltodextrin-Conjugated Gd-Based MRI Contrast Agents for Specific Diagnosis of Bacterial Infections. ACS APPLIED BIO MATERIALS 2021; 4:3762-3772. [PMID: 35006806 DOI: 10.1021/acsabm.0c01246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infections are one of the most serious health risks worldwide, and their rapid diagnosis remains a major challenge in clinic. To enhance the relaxivity and bacterial specificity of magnetic resonance imaging (MRI) contrast agents, here, a kind of gadolinium-based nanoparticles (NPs) of impressive biocompatibility is constructed as a contrast agent for maltodextrin-mediated bacteria-targeted diagnosis. To realize this, positively charged ultrasmall gadolinium oxide (Gd2O3, 2-3 nm) NPs are embedded in mesoporous silica NPs (MSN) with pore size around 6.38 nm. The resulting Gd2O3@MSN exhibits enhanced r1 value and T1-weighted MRI performance. Interestingly, upon conjugation of Gd2O3@MSN with maltodextrin to produce Gd2O3@MSN-Malt NPs, a remarkable decrease in internalization by osteosarcoma cells, alongside an increased adsorption toward E. coli and S. aureus, is achieved. It is therefore conceivable that the bacteria-targeted Gd2O3@MSN-Malt might be a promising MRI contrast agent for effective discrimination of bacterial infections from tumor.
Collapse
Affiliation(s)
- Chen Xu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, People's Republic of China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Chunshu Pan
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, People's Republic of China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
23
|
Gd/Y Hydroxide Nanosheets as Highly Efficient T 1/T 2 MRI Contrast Agents. NANOMATERIALS 2020; 11:nano11010017. [PMID: 33374105 PMCID: PMC7823540 DOI: 10.3390/nano11010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/20/2023]
Abstract
To develop highly efficient T1/T2 magnetic resonance imaging (MRI) contrast agents (CAs), Gd/Y hydroxide nanosheets were synthesized by a simple exfoliation method from layer compounds using sodium polyacrylate (PAA) as a dispersant and stabilizer. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) results revealed the excellent performance of monolayer nanosheets with thicknesses of up to 1.5 nm. The MRI results of the T1 and T2 relaxation times showed that all of the Gd/Y hydroxide nanosheets have high longitudinal and transverse relaxivities (r1 and r2). In particular, the 10% Gd-LRH nanosheets exhibited excellent MRI performance (r1 = 103 mM-1 s-1, r2 = 372 mM-1 s-1), which is rarely reported. Based on the relationship between the structure of 10% Gd-LRH nanosheets and their MRI performances, and the highly efficient MRI of spaced Gd atoms in the nanosheets, a special model to explain the outstanding MRI performance of the 10% Gd-LRH nanosheets is suggested. The cytotoxicity assessment of the 10% Gd-LRH nanosheets, evaluated by CCK-8 assays on HeLa cells, indicated no significant cytotoxicity. This study presents a significant advancement in 2D nanomaterial MRI CA research, with Gd-doped nanosheets positioned as highly efficient T1/T2 MRI CA candidates.
Collapse
|
24
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. APPLIED MATERIALS TODAY 2020; 20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, Li Y, Li G, Huang W, Zhao B, Hu Y. Biodegradable hollow mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and mild photo-therapeutic-induced mitochondrial damage on gastric cancer. J Nanobiotechnology 2020; 18:99. [PMID: 32690085 PMCID: PMC7370480 DOI: 10.1186/s12951-020-00653-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background CuS-modified hollow mesoporous organosilica nanoparticles (HMON@CuS) have been preferred as non-invasive treatment for cancer, as near infrared (NIR)-induced photo-thermal effect (PTT) and/or photo-dynamic effect (PDT) could increase cancer cells’ apoptosis. However, the certain role of HMON@CuS-produced-PTT&PDT inducing gastric cancer (GC) cells’ mitochondrial damage, remained unclear. Moreover, theranostic efficiency of HMON@CuS might be well improved by applying multi-modal imaging, which could offer an optimal therapeutic region and time window. Herein, new nanotheranostics agents were reported by Gd doped HMON decorated by CuS nanocrystals (called HMON@CuS/Gd). Results HMON@CuS/Gd exhibited appropriate size distribution, good biocompatibility, l-Glutathione (GSH) responsive degradable properties, high photo-thermal conversion efficiency (82.4%) and a simultaneous reactive oxygen species (ROS) generation effect. Meanwhile, HMON@CuS/Gd could efficiently enter GC cells, induce combined mild PTT (43–45 °C) and PDT under mild NIR power density (0.8 W/cm2). Surprisingly, it was found that PTT might not be the only factor of cell apoptosis, as ROS induced by PDT also seemed playing an essential role. The NIR-induced ROS could attack mitochondrial transmembrane potentials (MTPs), then promote mitochondrial reactive oxygen species (mitoROS) production. Meanwhile, mitochondrial damage dramatically changed the expression of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by inducing more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-9/caspase-3-depended cell apoptosis pathway. Our in vivo data also showed that HMON@CuS/Gd exhibited good fluorescence (FL) imaging (wrapping fluorescent agent), enhanced T1 imaging under magnetic resonance imaging (MRI) and infrared thermal (IRT) imaging capacities. Guided by FL/MRI/IRT trimodal imaging, HMON@CuS/Gd could selectively cause mild photo-therapy at cancer region, efficiently inhibit the growth of GC cells without evident systemic toxicity in vivo. Conclusion HMON@CuS/Gd could serve as a promising multifunctional nanotheranostic platform and as a cancer photo-therapy agent through inducing mitochondrial dysfunction on GC.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
29
|
Desai P, Thumma NJ, Wagh PR, Zhan S, Ann D, Wang J, Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol 2020; 11:323. [PMID: 32317961 PMCID: PMC7146461 DOI: 10.3389/fphar.2020.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer research in pursuit of better diagnostic and treatment modalities has seen great advances in recent years. However, the incidence rate of cancer is still very high. Almost 40% of women and men are diagnosed with cancer during their lifetime. Such high incidence has not only resulted in high mortality but also severely compromised patient lifestyles, and added a great socioeconomic burden. In view of this, chemoprevention has gained wide attention as a method to reduce cancer incidence and its relapse after treatment. Among various stems of chemoprevention research, nanotechnology-based chemoprevention approaches have established their potential to offer better efficacy and safety. This review summarizes recent advances in nanotechnology-based chemoprevention strategies for various cancers with emphasis on lung and bronchial cancer, colorectal, pancreatic, and breast cancer and highlights the unmet needs in this developing field towards successful clinical translation.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Naga Jyothi Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Shuyu Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
30
|
Zhou H, Qiu X, Shen Z. [T 1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:427-444. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) is an important imaging modality for clinical disease diagnosis, and nearly 50% of clinical MRI examinations require contrast agents to enhance the diagnostic sensitivity. This review provides a summary of the major MRI contrast agents and their classification, and the advantages and limits of the commercially available MRI contrast agents, and elaborates on the exceedingly small magnetic iron oxide nanoparticles (ES-MIONs), dotted core-shell iron and gadolinium hybrid nanoparticles (FeGd-HN) and exceedingly small gadolinium oxide nanoparticles (ES-GON). These nanoparticles can greatly improve the efficiency of T1-weighted MRI due to their high r1 value and low r2/r1 ratio, and are expected to be translated into clinical contrast agents for T1-weighted MRI. The authors also review the diagnostic and therapeutic integration system that combines MRI contrast agents with various tumor therapies, such as MRI-guided ferroptosis therapy, radiosensitization therapy, and photothermal therapy, which allow efficient treatment as well as real-time monitoring of tumors and serve as potential cancer therapy strategies. The possible future research directions in the field of MRI-based multifunctional diagnostic and therapeutic formulations are also discussed.
Collapse
Affiliation(s)
- Huimin Zhou
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|