1
|
Sun S, Li S, Feng W, Luo J, Russell TP, Shi S. Reconfigurable droplet networks. Nat Commun 2024; 15:1058. [PMID: 38316759 PMCID: PMC10844234 DOI: 10.1038/s41467-024-45214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Droplet networks stabilized by lipid interfacial bilayers or colloidal particles have been extensively investigated in recent years and are of great interest for compartmentalized reactions and biological functions. However, current design strategies are disadvantaged by complex preparations and limited droplet size. Here, by using the assembly and jamming of cucurbit[8]uril surfactants at the oil-water interface, we show a novel means of preparing droplet networks that are multi-responsive, reconfigurable, and internally connected over macroscopic distances. Openings between the droplets enable the exchange of matter, affording a platform for chemical reactions and material synthesis. Our work requires only a manual compression to construct complex patterns of droplet networks, underscoring the simplicity of this strategy and the range of potential applications.
Collapse
Affiliation(s)
- Shuyi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shuailong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Weixiao Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jiaqiu Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
2
|
Wu H, Chen J, Jiang T, Wu W, Li M, Zhang S, Li Z, Ye H, Zhu M, Zhou J, Lu Y, Jiang H. Effect of Eccentricity Difference on the Mechanical Response of Microfluidics-Derived Hollow Silica Microspheres during Nanoindentation. MICROMACHINES 2024; 15:109. [PMID: 38258228 PMCID: PMC10821515 DOI: 10.3390/mi15010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Hollow microspheres as the filler material of syntactic foams have been adopted in extensive practical applications, where the physical parameters and their homogeneity have been proven to be critical factors during the design process, especially for high-specification scenarios. Based on double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft manufacturing have been validated to possess well-controlled morphology and composition with a much narrower size distribution and fewer defects compared to traditional production methods. However, for more stringent requirements, the innate density difference between the core-shell solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of the hollow microsphere, which will lead to unfavorable mechanical performance deviations. To clarify the specific mechanical response of microfluidics-derived hollow silica microspheres with varying eccentricities, a hybrid method combining experimental nanoindentation and a finite element method (FEM) simulation was proposed. The difference in eccentricity can determine the specific mechanical response of hollow microspheres during nanoindentation, including crack initiation and the evolution process, detailed fracture modes, load-bearing capacity, and energy dissipation capability, which should shed light on the necessity of optimizing the concentricity of double-emulsion droplets to improve the wall thickness homogeneity of hollow microspheres for better mechanical performance.
Collapse
Affiliation(s)
- Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juzheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ziyong Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haitao Ye
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Mengya Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Lian X, Wang Y. Fast Interfacial Polymerization for Stabilizing Emulsion Droplets with Polymer Films beyond Emulsifiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16986-16993. [PMID: 37982603 DOI: 10.1021/acs.langmuir.3c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Stabilizing emulsion droplets with amphiphilic emulsifiers are the current prevailing method, but the extensive use of such amphiphilic substances has caused widespread concerns. In this Perspective, three traditional methods for the stabilization of emulsion droplets according to the type of emulsifiers used are outlined, and the emphasis is placed on the mechanism of steric hindrance for emulsion stabilization. Then, we provide a concise introduction and discussion of the fast interfacial polymerization method as a new strategy for preparing stable emulsifier-free emulsion droplets with a polymer film, including its research background, current progress, and possible development directions. It is anticipated that this paper will promote the development of emulsifier-free emulsion production via fast interfacial polymerization and other related methods.
Collapse
Affiliation(s)
- Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
4
|
Chu Y, Liao S, Wang Q, Ma Y, Wang Y. Floating Hydrogel Beads Made by Droplet Impact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203355. [PMID: 35871504 DOI: 10.1002/smll.202203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Droplet impact is a ubiquitous natural phenomenon that has been widely utilized to inspire and facilitate many industrial applications. Compared to the widely studied water droplet impact onto identical liquid surfaces, the water droplet impact onto an oil layer floating on a water bath (OLW) receives far less attention and its potential application has never been exploited. Herein, the process of water droplet impact onto the OLW is investigated with emphasis on the metastable states and potential applications. It is found that the dramatic deformation of the oil-water interface caused by the water droplet impact leads to two metastable states: oil in water in oil in water (O/W/O/W) and oil in water in oil (O/W/O). Through the subsequent introduction of gelation process, the metastable states can be frozen into floating hydrogel beads with similar shape to the roly-poly toys, which are attempted in gastric retentive drug delivery and algae bloom control. Specifically, the floating hydrogel beads perform well in gastric retentive drug delivery in vitro due to their inherent slow-release properties and floating capability. In addition, the floating hydrogel beads loading photocatalysts can capture more sunshine, and exhibit high photocatalytic efficiency, which is thus responsible for efficient algae bloom control.
Collapse
Affiliation(s)
- Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Qianci Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
5
|
Feng K, Gao N, Li W, Dong H, Sun F, He G, Zhou K, Zhao H, Li G. Arrested Coalescence of Ionic Liquid Droplets: A Facile Strategy for Spatially Organized Multicompartment Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104385. [PMID: 34643335 DOI: 10.1002/smll.202104385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Multicompartment assemblies attract much attention for their wide applications. However, the fabrication of multicompartment assemblies usually requires elaborately designed building blocks and careful controlling. The emergence of droplet networks has provided a facile way to construct multiple droplet architectures, which can further be converted to multicompartment assemblies. Herein, the bind motif-free building blocks are presented, which consist of the hydrophobic Tf2 N- -based ionic liquid (IL) dissolving LiTf2 N salt, that can conjugate via arrested coalescence in confined-space templates to form IL droplet networks. Subsequent ultraviolent polymerization generates robust free-standing multicompartment assemblies. The conjugation of building blocks relies not on the peripheral bind motif but on the interfacial instability-induced arrested coalescence, avoiding tedious surface modification and assembly process. By tuning structures of templates and building blocks, multicompartment assemblies with 0D, 1D, 2D, and 3D structures are prepared in a facile and high-throughput way. Importantly, the bottom-up construction enables modular control over the compositions and spatial positions of individual building blocks. Combining with the excellent solvency of ILs, this system can serve as a general platform towards versatile multicompartment architectures. As demonstrations, by tailoring the chambers the multicompartment assemblies can spatiotemporally sense and report the chemical cues and perform various modes of motion.
Collapse
Affiliation(s)
- Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenyun Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuwei Sun
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Yang W, Feng S, Zhang X, Wang Y, Li C, Zhang L, Zhao J, Gurzadyan GG, Tao S. Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38722-38731. [PMID: 34370443 DOI: 10.1021/acsami.1c10807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalysis is a facile strategy for complex chemical transformations. Heterogeneous photocatalysis, especially in the flow system, has attracted much attention as it avoids the separation of catalysts. Herein, a kind of a Bodipy-containing porous microcapsule heterogeneous photocatalyst was rationally constructed with modulation on a multiscale. The diiodo-Bodipy with methacrylate (MA-2IBDP) was synthesized as a polymerizable photosensitizer. After immobilization in a polymer matrix, the intersystem crossing rate constant of MA-2IBDP increased to 2.7 × 1010 s-1 and its triplet excited-state lifetime prolonged to ∼1 ms. Porous structures in microcapsules were created to facilitate mass transfer. A flat plate flow reactor was constructed to fix the catalytic microcapsules and improve light utilization. With the combination of all the above benefits, the reaction rate constant (0.896 s-1) is 10 times faster than that of MA-2IBDP in a homogeneous system for juglone synthesis. The continuous production can last for 30 h without yield decrease. The photocatalyst can also be used in aza-Henry reaction, Alder-Ene reaction, and oxidation of thiols to disulfides with conversion rates above 95%. This study provides a means for the construction of heterogeneous catalysts and the flow reaction system.
Collapse
Affiliation(s)
- Wenbo Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Shi Feng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuchao Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chong Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Lijing Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| |
Collapse
|
7
|
Prakash R, Ghosh S. Effect of Bend Wettability on Hydrodynamics of Liquid–Liquid Two-phase Flow in Serpentine Mini Geometry. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ravi Prakash
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
Mendiratta S, Ali AAA, Hejazi SH, Gates I. Dual Stimuli-Responsive Pickering Emulsions from Novel Magnetic Hydroxyapatite Nanoparticles and Their Characterization Using a Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1353-1364. [PMID: 33482065 DOI: 10.1021/acs.langmuir.0c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive emulsifiers have emerged as a class of smart agents that can permit regulated stabilization and destabilization of emulsions, which is essential for food, cosmetic, pharmaceutical, and petroleum industries. Here, we report the synthesis of novel "smart" hydroxyapatite (HaP) magnetic nanoparticles and their corresponding stimuli-responsive Pickering emulsions and explore their movement under confined spaces using a microfluidic platform. Pickering emulsions prepared with our magnetic stearic acid-functionalized Fe2O3@HaP nanoparticles exhibited pronounced pH-responsive behavior. We observed that the diameter of emulsion droplets decreases with an increase in pH. Swift demulsification was achieved by lowering the pH, whereas the reformation of emulsions was achieved by increasing the pH; this emulsification-demulsification cycling was successful for at least ten cycles. We used a microfluidic platform to test the stability of the emulsions under flowing conditions and their response to a magnetic field. We observed that the emulsion stability was diminished and droplet coalescence was enhanced by the application of the magnetic field. The smart nanoparticles we developed and their HaP-based emulsions present promising materials for pharmaceutical and petroleum industries, where responsive emulsions with controlled stabilities are required.
Collapse
Affiliation(s)
- Shruti Mendiratta
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ahmed Atef Ahmed Ali
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Seyed Hossein Hejazi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ian Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
9
|
Wu H, Ren Y, Hou L, Jiang T, Jiang H. Fabrication of syntactic foam fillers via manipulation of on-chip quasi concentric nanoparticle-shelled droplet templates. LAB ON A CHIP 2020; 20:4600-4610. [PMID: 33135032 DOI: 10.1039/d0lc00730g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Syntactic foams with fly ash cenospheres or commercial microballoons as fillers have been widely used in various applications ranging from aerospace to marine fields and the automotive industry. However, these two extensively adopted fillers possess multiple shortcomings, such as variations in the composition, material degeneration and distinct structural heterogeneity, which will inevitably hamper accurate prediction of the structure-property relationship and the corresponding design of the syntactic foams, reducing material utilization. Here, we present a microfluidic-based approach integrated with a subsequent heat treatment process to engineer syntactic foam fillers with a predefined composition, specified dimensional scope and reduced structural heterogeneity. These fillers are fully guaranteed by the synergy of the flexible and controllable generation of droplet templates with hydrodynamic regulation and rational selection of the nanoparticle dynamic response with respect to the heating temperature. In addition, two distinct surface morphologies have been observed with a temperature demarcation point of 1473 K, further endowing the fillers with multiplicity and optionality, simultaneously laying the foundation to regulate the properties of the syntactic foams through the diversity of the filler selection. Then, we fabricated a syntactic foam specimen by mold casting, and the integrity of the fillers inside was verified using an elaborate buoyancy comparison experiment, exhibiting its potential value in lightweight related applications. As the fillers derived from our approach show significant advantages over conventional ones, they will provide considerable benefits for the regulation and improvement of syntactic foam fillers in many practical applications.
Collapse
Affiliation(s)
- Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001.
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang, PR China 150001.
| |
Collapse
|
10
|
Li D, Huang B, Cao Y, Han M, Wu X, Sun Q, Ma C, Zhao L, Liu P, Zheng C, Dong H, Wang X, Liu Y, Zhang Y. Confined interface vibration for femtoliter droplets generation and manipulation. NANO SELECT 2020. [DOI: 10.1002/nano.202000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dege Li
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Bingfang Huang
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Yi Cao
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Molong Han
- Centre of Micro‐photonics Swinburne University of Technology Melbourne Australia
| | - Xinlei Wu
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Qiang Sun
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Chi Ma
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Lilong Zhao
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Peng Liu
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Chao Zheng
- Department of Chemical and Process Engineering University of Surrey Guildford UK
| | - Hang Dong
- School of Mechanical Engineering Xinjiang University Urumqi China
| | - Xiaolong Wang
- Dongying Science and Technology Bureau Dongying China
| | - Yonghong Liu
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
| | - Yanzhen Zhang
- College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao China
- Centre of Micro‐photonics Swinburne University of Technology Melbourne Australia
| |
Collapse
|
11
|
Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. Int J Pharm 2020; 584:119401. [DOI: 10.1016/j.ijpharm.2020.119401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|