1
|
Sui S, Xie H, Chen B, Wang T, Qi Z, Wang J, Sha J, Liu E, Zhu S, Lei K, Zheng S, Zhou G, He C, Hu W, He F, Zhao N. Highly Reversible Sodium-ion Storage in A Bifunctional Nanoreactor Based on Single-atom Mn Supported on N-doped Carbon over MoS 2 Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202411255. [PMID: 38980971 DOI: 10.1002/anie.202411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Conversion-type electrode materials have gained massive research attention in sodium-ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium-ion storage, wherein a record-high reversible degree of 85.65 % is achieved for MoS2 anodes. Composed of nitrogen-doped carbon-supported single atom Mn (NC-SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In situ/ex situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC-SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier. As a result, the nanoreactor-promoted MoS2 anodes exhibit ultra-stable cycling with a capacity retention of 99.86 % after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two-dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion-type electrode materials, thereby enhancing the application potential for long-cycled SIBs.
Collapse
Affiliation(s)
- Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Haonan Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Tianshuai Wang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zijia Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Jingyi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Junwei Sha
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China E-mails
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| |
Collapse
|
2
|
Zhu K, Gao S, Bai T, Li H, Zhang X, Mu Y, Guo W, Cui Z, Wang N, Zhao Y. Heterogeneous MoS 2 Nanosheets on Porous TiO 2 Nanofibers toward Fast and Reversible Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402774. [PMID: 38805741 DOI: 10.1002/smll.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Indexed: 05/30/2024]
Abstract
2D layered molybdenum disulfide (MoS2) has garnered considerable attention as an attractive electrode material in sodium-ion batteries (SIBs), but sluggish mass transfer kinetic and capacity fading make it suffer from inferior cycle capability. Herein, hierarchical MoS2 nanosheets decorated porous TiO2 nanofibers (MoS2 NSs@TiO2 NFs) with rich oxygen vacancies are engineered by microemulsion electrospinning method and subsequent hydrothermal/heat treatment. The MoS2 NSs@TiO2 NFs improves ion/electron transport kinetic and long-term cycling performance through distinctive porous structure and heterogeneous component. Consequently, the electrode exhibits excellent long-term Na storage capacity (298.4 mAh g-1 at 5 A g-1 over 1100 cycles and 235.6 mAh g-1 at 10 A g-1 over 7200 cycles). Employing Na3V2(PO4)3 as cathode, the full cell maintains a desirable capacity of 269.6 mAh g-1 over 700 cycles at 1.0 A g-1. The stepwise intercalation-conversion and insertion/extraction endows outstanding Na+ storage performance, which yields valuable insight into the advancement of fast-charging and long-cycle life SIBs anode materials.
Collapse
Affiliation(s)
- Keping Zhu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Songwei Gao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Tonghua Bai
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Huaike Li
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xuefeng Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yue Mu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wei Guo
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhiming Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
3
|
Yao S, Wang S, Liu Y, Hou Z, Wang J, Gao X, Sun Y, Fu W, Nie K, Xie J, Yang Z, Yan YM. High Flux and Stability of Cationic Intercalation in Transition-Metal Oxides: Unleashing the Potential of Mn t 2g Orbital via Enhanced π-Donation. J Am Chem Soc 2023. [PMID: 38039528 DOI: 10.1021/jacs.3c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.
Collapse
Affiliation(s)
- Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishan Hou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinrui Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. ENERGIES 2022. [DOI: 10.3390/en15114052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy storage has become increasingly important as a study area in recent decades. A growing number of academics are focusing their attention on developing and researching innovative materials for use in energy storage systems to promote sustainable development goals. This is due to the finite supply of traditional energy sources, such as oil, coal, and natural gas, and escalating regional tensions. Because of these issues, sustainable renewable energy sources have been touted as an alternative to nonrenewable fuels. Deployment of renewable energy sources requires efficient and reliable energy storage devices due to their intermittent nature. High-performance electrochemical energy storage technologies with high power and energy densities are heralded to be the next-generation storage devices. Transition metal chalcogenides (TMCs) have sparked interest among electrode materials because of their intriguing electrochemical properties. Researchers have revealed a variety of modifications to improve their electrochemical performance in energy storage. However, a stronger link between the type of change and the resulting electrochemical performance is still desired. This review examines the synthesis of chalcogenides for electrochemical energy storage devices, their limitations, and the importance of the modification method, followed by a detailed discussion of several modification procedures and how they have helped to improve their electrochemical performance. We also discussed chalcogenides and their composites in batteries and supercapacitors applications. Furthermore, this review discusses the subject’s current challenges as well as potential future opportunities.
Collapse
|
5
|
Cho SH, Kim JH, Kim IG, Park JH, Jung JW, Kim HS, Kim ID. Reduced Graphene-Oxide-Encapsulated MoS 2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. NANOMATERIALS 2021; 11:nano11102691. [PMID: 34685132 PMCID: PMC8539876 DOI: 10.3390/nano11102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022]
Abstract
Sodium-ion batteries (SIBs) have been increasingly studied due to sodium (Na) being an inexpensive ionic resource (Na) and their battery chemistry being similar to that of current lithium-ion batteries (LIBs). However, SIBs have faced substantial challenges in developing high-performance anode materials that can reversibly store Na+ in the host structure. To address these challenges, molybdenum sulfide (MoS2)-based active materials have been considered as promising anodes, owing to the two-dimensional layered structure of MoS2 for stably (de)inserting Na+. Nevertheless, intrinsic issues of MoS2—such as low electronic conductivity and the loss of active S elements after a conversion reaction—have limited the viability of MoS2 in practical SIBs. Here, we report MoS2 embedded in carbon nanofibers encapsulated with a reduced graphene oxide (MoS2@CNFs@rGO) composite for SIB anodes. The MoS2@CNFs@rGO delivered a high capacity of 345.8 mAh g−1 at a current density of 100 mA g−1 for 90 cycles. The CNFs and rGO were synergistically taken into account for providing rapid pathways for electrons and preventing the dissolution of S sources during repetitive conversion reactions. This work offers a new point of view to realize MoS2-based anode materials in practical SIBs.
Collapse
Affiliation(s)
- Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Jong-Heon Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - Il-Gyu Kim
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44776, Korea; (I.-G.K.); (J.-H.P.)
| | - Jeong-Ho Park
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44776, Korea; (I.-G.K.); (J.-H.P.)
| | - Ji-Won Jung
- School of Materials Science and Engineering, University of Ulsan, Ulsan 44776, Korea; (I.-G.K.); (J.-H.P.)
- Correspondence: (J.-W.J.); (H.-S.K.); (I.-D.K.)
| | - Hyun-Suk Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: (J.-W.J.); (H.-S.K.); (I.-D.K.)
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- Correspondence: (J.-W.J.); (H.-S.K.); (I.-D.K.)
| |
Collapse
|
6
|
Wu X, Lu L, Liu H, Feng L, Li W, Sun L. Metalloid Te‐Doped Fe‐Based Catalysts Applied for Electrochemical Water Oxidation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Liangjie Lu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Hongzhen Liu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Lu Feng
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Weijia Li
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
- Center of Artificial Photosynthesis for Solar Fuels Westlake University 310024 Hangzhou P.R.China
- Department of Chemistry School of Chemical Science and Engineering KTH Royal Institute of Technology 10044 Stockholm Sweden
| |
Collapse
|
7
|
Zhu W, Cheng Y, Wang C, Pinna N, Lu X. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. NANOSCALE 2021; 13:9112-9146. [PMID: 34008677 DOI: 10.1039/d1nr01070k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) electrospun nanomaterials have attracted significant attention due to their unique structures and outstanding chemical and physical properties such as large specific surface area, distinct electronic and mass transport, and mechanical flexibility. Over the past years, the integration of metal sulfides with electrospun nanomaterials has emerged as an exciting research topic owing to the synergistic effects between the two components, leading to novel and interesting properties in energy, optics and catalysis research fields for example. In this review, we focus on the recent development of the preparation of electrospun nanomaterials integrated with functional metal sulfides with distinct nanostructures. These functional materials have been prepared via two efficient strategies, namely direct electrospinning and post-synthesis modification of electrospun nanomaterials. In this review, we systematically present the chemical and physical properties of the electrospun nanomaterials integrated with metal sulfides and their application in electronic and optoelectronic devices, sensing, catalysis, energy conversion and storage, thermal shielding, adsorption and separation, and biomedical technology. Additionally, challenges and further research opportunities in the preparation and application of these novel functional materials are also discussed.
Collapse
Affiliation(s)
- Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ya Cheng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
8
|
Liu M, Chen S, Jin Y, Fang Z. MoS 2 encapsulated in three-dimensional hollow carbon frameworks for stable anode of sodium ion batteries. CrystEngComm 2021. [DOI: 10.1039/d1ce00678a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MoS2 wrapped in nitrogen-doped three-dimensional hollow carbon frameworks is designed for improved sodium ion battery anode performance.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Materials Science
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- Anhui Normal University
- Wuhu
- P. R. China
| | - Sihan Chen
- College of Chemistry and Materials Science
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- Anhui Normal University
- Wuhu
- P. R. China
| | - Ying Jin
- School of Chemical and Environmental Engineering
- Anhui Polytechnic University
- Wuhu
- P. R. China
| | - Zhen Fang
- College of Chemistry and Materials Science
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- Anhui Normal University
- Wuhu
- P. R. China
| |
Collapse
|
9
|
Zhang X, Yuan W, Yang Y, Chen Y, Tang Z, Wang C, Yuan Y, Ye Y, Wu Y, Tang Y. Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbon-Included TiO 2 Core-Shell Sulfur Hosts for Advanced Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005998. [PMID: 33258313 DOI: 10.1002/smll.202005998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 06/12/2023]
Abstract
The performance of lithium-sulfur (Li-S) batteries is greatly hindered by the notorious shuttle effect of lithium polysulfides (LiPSs). To address this issue, in situ topochemical oxidation derivative TiC@carbon-included TiO2 (TiC@C-TiO2 ) core-shell composite is designed and proposed as a multifunctional sulfur host, which integrates the merits of conductive TiC core to facilitate the redox reaction kinetics of sulfur species, and porous C-TiO2 shell to suppress the dissolution and shuttling of LiPSs through chemisorption. A unique dual chemical mediation mechanism is demonstrated for the proposed TiC@C-TiO2 composite that synergistically entraps LiPSs through thiosulfate/polythionate conversion coupled with strong polar-polar interaction. The morphological characterization reveals that the TiC@C-TiO2 -based cathode can well regulate the distribution of electrode materials to retard their accumulation inside the electrode, ensuring effective contact between the active materials and electrolyte. Based on its unique function and structure, the cathode delivers an improved capacity of 1256 mAh g-1 at 0.2C, a remarkable rate capability of 643 mAh g-1 , and an ultralow capacity decay rate of 0.065% per cycle at 2C over 900 cycles. This work not only demonstrates a dual chemical mediation mechanism to immobilize LiPSs, but also provides a universal strategy to construct multifunctional sulfur hosts for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Yang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhenghua Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chun Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuhang Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yintong Ye
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaopeng Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yong Tang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
Zhan W, Zhu M, Lan J, Yuan H, Wang H, Yang X, Sui G. All-in-One MoS 2 Nanosheets Tailored by Porous Nitrogen-Doped Graphene for Fast and Highly Reversible Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51488-51498. [PMID: 33147944 DOI: 10.1021/acsami.0c15169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Though being a promising anode material for sodium-ion batteries (SIBs), MoS2 with high theoretical capacity shows poor rate capability and rapid capacity decay, especially involving the conversion of MoS2 to Mo metal and Na2S. Here, we report all-in-one MoS2 nanosheets tailored by porous nitrogen-doped graphene (N-RGO) for the first time to achieve superior structural stability and high cycling reversibility of MoS2 in SIBs. The all-in-one MoS2 nanosheets possess desirable structural characteristics by admirably rolling up all good qualities into one, including vertical alignment, an ultrathin layer, vacancy defects, and expanded layer spacing. Thus, the all-in-one MoS2@N-RGO composite anode exhibits an improvement in the charge transport kinetics and availability of active materials in SIBs, resulting in outstanding cycling and rate performance. More importantly, the restricted growth of all-in-one MoS2 by the porous N-RGO via a strong coupling effect dramatically improves the cycling reversibility of conversion reaction. Consequently, the all-in-one MoS2@N-RGO composite anode demonstrates excellent reversible capacity, outstanding rate capability, and superior cycling stability. This study strongly suggests that the all-in-one MoS2@N-RGO has great potential for practical application in high-performance SIBs.
Collapse
Affiliation(s)
- Wenwei Zhan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhu
- Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haocheng Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Sui
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|