1
|
Han Q, Zhang W, Zhu L, Liu M, Xia C, Xie L, Qiu X, Xiao Y, Yi L, Cao X. MOF-Derived Bimetallic Selenide CoNiSe 2 Nanododecahedrons Encapsulated in Porous Carbon Matrix as Advanced Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6033-6047. [PMID: 38284523 DOI: 10.1021/acsami.3c18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal-organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g-1 at 0.1 A g-1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g-1, a reversible discharge specific capacity of 549.9 mA h g-1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid-electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.
Collapse
Affiliation(s)
- Qing Han
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Weifan Zhang
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Limin Zhu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Minlu Liu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Changle Xia
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xuejing Qiu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yongmei Xiao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiaoyu Cao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Kim YB, Seo HY, Kim KH, Cho JS, Kang YC, Park GD. Synthesis of Iron Sulfide Nanocrystals Encapsulated in Highly Porous Carbon-Coated CNT Microsphere as Anode Materials for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305686. [PMID: 37727094 DOI: 10.1002/smll.202305686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Highly porous carbon materials with a rationally designed pore structure can be utilized as reservoirs for metal or nonmetal components. The use of small-sized metal or metal compound nanoparticles, completely encapsulated by carbon materials, has attracted significant attention as an effective approach to enhancing sodium ion storage properties. These materials have the ability to mitigate structural collapse caused by volume expansion during the charging process, enable short ion transport length, and prevent polysulfide elution. In this study, a concept of highly porous carbon-coated carbon nanotube (CNT) porous microspheres, which serve as excellent reservoir materials is suggested and a porous microsphere is developed by encapsulating iron sulfide nanocrystals within the highly porous carbon-coated CNTs using a sulfidation process. Furthermore, various sulfidation processes to determine the optimal method for achieving complete encapsulation are investigated by comparing the morphologies of diverse iron sulfide-carbon composites. The fully encapsulated structure, combined with the porous carbon, provides ample space to accommodate the significant volume changes during cycling. As a result, the porous iron sulfide-carbon-CNT composite microspheres exhibited outstanding cycling stability (293 mA h g-1 over 600 cycles at 1 A g-1 ) and remarkable rate capability (100 mA h g-1 at 5 A g-1 ).
Collapse
Affiliation(s)
- Yeong Beom Kim
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Hyo Yeong Seo
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Kyeong-Ho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Gi Dae Park
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
3
|
Feng Q, Gao Z, Hou K, Wang J, Du H, Jing Q. Synthesis, structures and properties of two new selenite optical materials: K 2Zn 3Se 4O 12 and K 4Zn 3V 4Se 2O 19. Dalton Trans 2023; 52:16920-16926. [PMID: 37927065 DOI: 10.1039/d3dt03130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Two new selenites, K2Zn3Se4O12 (compound 1) and K4Zn3V4Se2O19 (compound 2), have been successfully synthesized by solid-state reactions in vacuum tubes. Compound 1 consists of a three-dimensional (3D) framework with [SeO3] triangular pyramids and [ZnO4] tetrahedra in the monoclinic space group P21/c (No. 14). Compound 1's cut-off edge is below 344 nm, based on its UV-Vis-NIR diffuse reflectance studies, and theoretical calculations indicate a birefringence of around 0.043 at 1064 nm. The two-dimensional layer of compound 2, in contrast, is made up of [SeO3] triangular pyramids, [ZnO4] tetrahedra, and [V4O13] tetrahedra. It crystallizes in the monoclinic space group C2/c (No. 15). Its UV-Vis-NIR diffuse reflectance studies demonstrate that the compound's cut-off edge is lower than 330 nm.
Collapse
Affiliation(s)
- Qiuyuan Feng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, P. R. China.
| | - Zhixia Gao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, P. R. China.
| | - Ketian Hou
- School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China.
| | - Jialong Wang
- School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China.
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, P. R. China.
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China.
| |
Collapse
|
4
|
Kang X, Jin Z, Peng H, Cheng Z, Liu L, Li X, Xie L, Zhang J, Dong Y. The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy-density lithium-sulfur batteries. J Colloid Interface Sci 2023; 637:161-172. [PMID: 36701862 DOI: 10.1016/j.jcis.2023.01.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Lithium-sulfur (Li-S) batteries are currently only in the basic research stage and have not been commercialized, which is mainly affected by the poor conductivity of sulfur/lithium sulfide (S/Li2S), volume expansion effect of sulfur and the shuttle effect of lithium polysulfides (LiPSs). Herein, a three dimensional (3D) carbon nanotubes (CNTs) decorated cubic Co9Se8-x/FeSe2-y (0 < x < 8, 0 < y < 2) composite (Co9Se8-x/FeSe2-y@CNTs) is developed, and used as the functionalized mediator on polypropylene (PP) in Li-S batteries. Benefiting from the good electrical conductivity, large number of Se vacancies and the triple block/adsorption/catalytic effects of Co9Se8-x/FeSe2-y@CNTs, the cell with Co9Se8-x/FeSe2-y@CNTs//PP modified separator delivers a high reversible capacity (1103.5 mA h g-1) at 1C after three cycles activation at 0.5C and remains 446 mA g h-1 after 750 cycles with a 0.08% capacity decay rate each cycle. Moreover, at 0.2C, a high areal capacity of 3.63 mA h cm-2 after 100 cycles with a high sulfur loading of 4.1 mg cm-2 is obtained. The in-situ XRD tests revealing the transition path of α-S8 → Li2S → β-S8 during the first charge-discharge process, then β-S8 → Li2S → β-S8 conversion reaction in the next cycles, and firstly determine the sulfur-selenide active intermediates (Se1.1S6.9) during cycles. The work provides a new insight into the development of bimetallic selenide composites by defect engineering with highly adsorptive and catalytic properties for Li-S batteries.
Collapse
Affiliation(s)
- Xiyang Kang
- College of Science, Henan Agricultural University, Zhengzhou 450002, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ziqian Jin
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huaiqi Peng
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Li
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lixia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Zhu B, Liu D, Wang L, Zhong B, Liu H. Rational design of NiO/NiSe 2@C heterostructure as high-performance anode for Li-ion battery. J Colloid Interface Sci 2023; 643:437-446. [PMID: 37086533 DOI: 10.1016/j.jcis.2023.03.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023]
Abstract
Biphasic or multiphase heterostructures have promising futures in advanced electrode materials for energy-related applications because of their desirable synergistic effects. Here we prepared a rational NiO/NiSe2@C heterostructure microsphere through carbonization, selenization, and oxidation using Ni-MOF as a precursor. Electrochemical studies were conducted to examine the Li+ storage characteristics, and density functional theory (DFT) was utilized to comprehend the underlying mechanism. When employed as the anode for LIBs, the NiO/NiSe2@C showed a high specific capacity and long-term cyclic stability, with a specific capacity of 992 mAh g-1 for 600 cycles at a current density of 0.2 A g-1. The NiO/NiSe2@C exhibits a significantly enhanced lithium-ion diffusion coefficient ( [Formula: see text] ) value. The DFT results show that an electron-rich area forms at the NiO/NiSe2 heterointerface, where the metalloid selenium transfers electrons to the oxygen atoms. The lithiation reactions were improved dramatically by redistributing interfacial charges, which can trigger a built-in electric field that dramatically promotes the capacitance contribution of electrode materials, enhances the lithium storage capacity, and accelerates the ion/electron transmission. The rational synthesis of NiO/NiSe2@C heterostructure can provide an idea for designing novel heterostructure anode materials.
Collapse
Affiliation(s)
- Baonian Zhu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China.
| | - Leyao Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China
| | - Haiping Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
6
|
Chemical Etching and Phase Transformation of Nickel-Cobalt Prussian Blue Analogs for Improved Solar-Driven Water-Splitting Applications. J Colloid Interface Sci 2023; 641:861-874. [PMID: 36966575 DOI: 10.1016/j.jcis.2023.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.
Collapse
|
7
|
Ji XX, Zhao QH, Chen H, Luo XW, Shang Y, Liu XD. Facile Synthesis of Hierarchical CoSeO3‧2H2O Nanoflowers Assembled by Nanosheets as a Novel Anode Material for High-Performance Lithium-Ion Batteries. NANOMATERIALS 2022; 12:nano12142474. [PMID: 35889698 PMCID: PMC9320587 DOI: 10.3390/nano12142474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
As novel anodic materials for lithium-ion batteries (LIBs), transitional metal selenites can transform into metal oxide/selenide heterostructures in the first cycle, which helps to enhance the Li+ storage performance, especially in terms of high discharge capacity. Herein, well-defined hierarchical CoSeO3‧2H2O nanoflowers assembled using 10 nm-thick nanosheets are successfully synthesized via a facile one-step hydrothermal method. When used as anodic materials for LIBs, the CoSeO3‧2H2O nanoflowers exhibit a considerably high discharge capacity of 1064.1 mAh g−1 at a current density of 0.1 A g−1. In addition, the obtained anode possesses good rate capability and cycling stability. Owing to the superior electrochemical properties, the CoSeO3‧2H2O nanoflowers would serve as promising anodic materials for high-performance LIBs.
Collapse
Affiliation(s)
- Xiao-Xu Ji
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; (X.-X.J.); (Q.-H.Z.)
| | - Qing-Huai Zhao
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; (X.-X.J.); (Q.-H.Z.)
| | - Hao Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; (H.C.); (X.-W.L.); (Y.S.)
| | - Xin-Wei Luo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; (H.C.); (X.-W.L.); (Y.S.)
| | - Yi Shang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; (H.C.); (X.-W.L.); (Y.S.)
| | - Xiao-Di Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; (H.C.); (X.-W.L.); (Y.S.)
- Correspondence:
| |
Collapse
|
8
|
Huang Y, Liu Y, Deng Y, Zhang J, He B, Sun J, Yang Z, Zhou W, Zhao L. Enhancing the bifunctional activity of CoSe 2 nanocubes by surface decoration of CeO 2 for advanced zinc-air batteries. J Colloid Interface Sci 2022; 625:839-849. [PMID: 35772210 DOI: 10.1016/j.jcis.2022.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 10/31/2022]
Abstract
The coupling of oxygen evolution and reduction reactions (OER and ORR) plays a key role in rechargeable Zn-air batteries (ZABs). However, both OER and ORR still suffer from sluggish kinetics, even when using the mainstream precious metal-based catalysts. Herein, oxygen vacancies-rich CeO2 decorated CoSe2 nanocubes are proposed as a novel air electrode to drive OER and ORR for ZABs. The resultant CeO2 coupled CoSe2 nanocubes (CeO2@CoSe2-NCs) catalyst exhibits a significantly enhanced bifunctional activity relative to the pristine CoSe2-NCs and the pristine CeO2. Moreover, an assembled ZABs using this CeO2@CoSe2-NCs electrode delivers a high output power density of 153 mW cm-2 and a long-life stability over 400 cycles, superior to the benchmark Pt/C-IrO2 electrode. Theoretical calculations reveal that the electronic interaction and oxygen vacancies in CeO2@CoSe2-NCs contribute to efficient oxygen electrocatalysis. This protocol provides a promising approach of constructing oxygen vacancies in hybrid catalysts for energy conversion and storage devices.
Collapse
Affiliation(s)
- Yonglong Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuzhou Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanzhu Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| | - Jian Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhihong Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
9
|
Xu L, Zhang X, Chen R, Wu F, Li L. P-Doped Ni/NiO Heterostructured Yolk-Shell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105897. [PMID: 34877812 DOI: 10.1002/smll.202105897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The development of high-efficiency lithium-ion battery electrodes composed of recycled materials is crucial for the commercialization of retired batteries, but it remains a significant barrier. The usage and recycling of spent graphite are encouraged by the huge number of batteries that are going to be dismantled. Here, an anode made of phosphorus-doped Ni/NiO yolk-shell nanospheres embedded on wasted graphite is developed. Electroless deposition and a subsequent heat-treatment procedure are used to make it in a methodical manner. The internal vacuum space of the nanospheres mitigates volume expansion and facilitates Li+ diffusion, whereas the embedded metallic Ni and conductive graphite layer expedite charge transfer. The optimal reusable composite electrode is ecologically benign and has high specific capacities (724 mAh g-1 at 0.1 A g-1 ) as well as outstanding cycle stability (500 cycles). The unusual 3D sandwich-like arrangement with strong spent graphite, the yolk-shell hetero-structure, continuous electron/ion transport routes, and attractive structure stability all contribute to this degree of performance. Such a nanoscale design and engineering strategy not only provides a green recovery method for anode graphite, but also enlightens other nanocomposites to boost their lithium storage performance.
Collapse
Affiliation(s)
- Liqianyun Xu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xixue Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong, 511447, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong, 511447, China
| |
Collapse
|
10
|
Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhao Q, Peng P, Zhu P, Yang G, Sun X, Ding R, Gao P, Liu E. F-doped zinc ferrite as high-performance anode materials for lithium-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine-doped ZnFe2O4via a quick ice-cold KF/NH4F quenching method effectively improved the electrochemical performance of ZnFe2O4 for LIBs.
Collapse
Affiliation(s)
- Qiong Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Puguang Peng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Piao Zhu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Gang Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China
| |
Collapse
|
12
|
Liu J, Wu J, Fan S, Li G. CoS 2 /N-Doped Hollow Spheres as an Anode Material for High-Performance Sodium-Ion Batteries. Chemistry 2021; 27:9820-9829. [PMID: 33886138 DOI: 10.1002/chem.202100510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 11/11/2022]
Abstract
In this work, we first synthesized polyacrylic acid (PAA) spheres and then used PAA as a template to load Co(OH)2 particles onto its surface. The product of CoS2 nanoparticles dispersed in N-doped hollow spheres (N-HCS) was prepared through sulfurization treatment (CoS2 /S@N-HCS). During the sulfuration process, sulfur penetrates into the PAA, embedding into the graphite layer along with the carbonization process. It was found that during the charging and discharging process, the sulfur in the carbon layer will gradually dissolve out, thereby forming new ion diffusion channels in the carbon spheres and exposing more CoS2 active sites. The CoS2 /S@N-HCS composite exhibits a specific capacity of 729.6 mAh g-1 after 500 cycles at a current density of 1 A g-1 . The sodium-storage mechanism and reaction kinetics of the materials were further measured by in-situ electrochemical impedance spectroscopy, ex-situ X-ray diffraction, capacitance performance evaluation, and galvanostatic intermittent titration technique. The excellent cycling performance and rate capability demonstrated that the CoS2 /S@N-HCS is a potential and prospective anode material for sodium-ion batteries.
Collapse
Affiliation(s)
- Jianyu Liu
- Key Laboratory of Processing and Testing Technology of, Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jixian Wu
- Key Laboratory of Processing and Testing Technology of, Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Siwei Fan
- Key Laboratory of Processing and Testing Technology of, Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Guangda Li
- Key Laboratory of Processing and Testing Technology of, Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
13
|
Li W, Wang D, Gong Z, Yin Z, Guo X, Liu J, Mao C, Zhang Z, Li G. A Robust Strategy for Engineering Fe 7S 8/C Hybrid Nanocages Reinforced by Defect-Rich MoS 2 Nanosheets for Superior Potassium-Ion Storage. ACS NANO 2020; 14:16046-16056. [PMID: 33147943 DOI: 10.1021/acsnano.0c07733] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal sulfides have attracted tremendous research interest for developing high-performance electrodes for potassium-ion batteries (PIBs) for their high theoretical capacities. Nevertheless, the practical application of metal sulfides in PIBs is still unaddressed due to their intrinsic shortcomings of low conductivity and severe volume changes during the potassiation/depotassiation process. Herein, robust Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2 nanosheets (Fe7S8/C@d-MoS2) were designed, which possess abundant multichannel and active sites for potassium-ion transportation and storage. Kinetic analysis and theoretical calculation verify that the introduction of defect-rich MoS2 nanosheets dramatically promotes the potassium-ion diffusion coefficient. The ex-situ measurements revealed the potassium-ion storage mechanism in the Fe7S8/C@d-MoS2 composite. Benefitting from the tailored structural design, the Fe7S8/C@d-MoS2 hybrid nanocages show high reversible capacity, exceptional rate property, and superior cyclability.
Collapse
Affiliation(s)
- Wenda Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dezhu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijiang Gong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaosong Guo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changming Mao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhonghua Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Kong F, Wang J, Chen J, Tao S, Qian B, Luo H. MOF-derived ultrasmall CoSe 2 nanoparticles encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chem Commun (Camb) 2020; 56:9218-9221. [PMID: 32662793 DOI: 10.1039/d0cc03113e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ultrasmall CoSe2 nanoparticles encapsulated by an N-doped carbon matrix were prepared by selenizing a novel Co-metal organic framework precursor. The excellent electrochemical performance may be due to the synergistic effect of the N-doped carbon matrix and the ultrasmall CoSe2.
Collapse
Affiliation(s)
- Fanjun Kong
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | | | | | | | | | | |
Collapse
|
15
|
Yang SH, Park SK, Park GD, Lee JH, Kang YC. Conversion Reaction Mechanism of Ultrafine Bimetallic Co-Fe Selenides Embedded in Hollow Mesoporous Carbon Nanospheres and Their Excellent K-Ion Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002345. [PMID: 32686320 DOI: 10.1002/smll.202002345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Potassium-ion batteries (KIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundance and affordability of potassium. However, the development of suitable electrode materials that can stably store large-sized K ions remains a challenge. This study proposes a facile impregnation method for synthesizing ultrafine cobalt-iron bimetallic selenides embedded in hollow mesoporous carbon nanospheres (HMCSs) as superior anodes for KIBs. This involves loading metal precursors into HMCS templates using a repeated "drop and drying" process followed by selenization at various temperatures, facilitating not only the preparation of bimetallic selenide/carbon composites but also controlling their structures. HMCSs serve as structural skeletons, conductive templates, and vehicles to restrain the overgrowth of bimetallic selenide particles during thermal treatment. Various analysis strategies are employed to investigate the charge-discharge mechanism of the new bimetallic selenide anodes. This unique-structured composite exhibits a high discharge capacity (485 mA h g-1 at 0.1 A g-1 after 200 cycles) and enhanced rate capability (272 mA h g-1 at 2.0 A g-1 ) as a promising anode material for KIBs. Furthermore, the electrochemical properties of various nanostructures, from hollow to frog egg-like structures, obtained by adjusting the selenization temperature, are compared.
Collapse
Affiliation(s)
- Su Hyun Yang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Seung-Keun Park
- Department of Chemical Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan, 31080, Republic of Korea
| | - Gi Dae Park
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
16
|
Pan Y, Cheng X, Gao M, Fu Y, Feng J, Gong L, Ahmed H, Zhang H, Battaglia VS. Cagelike CoSe 2@N-Doped Carbon Aerogels with Pseudocapacitive Properties as Advanced Materials for Sodium-Ion Batteries with Excellent Rate Performance and Cyclic Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33621-33630. [PMID: 32603080 DOI: 10.1021/acsami.0c06296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical conversion reaction based electrodes offer a high sodium storage capacity in rechargeable batteries by utilizing the variable valence states of transition metals. Thus, transition metal chalcogenides (TMCs) as such materials have been intensively investigated in recent years to explore the possibilities of practical application in rechargeable sodium-ion batteries; however, it is hindered by poor rate performance and a high-cost preparation method. In addition, some issues in regards to conversion reactions remain poorly understood, including incomplete reversible reaction processes, polarization, and hysteresis. Herein, a novel cagelike CoSe2@N-doped carbon aerogels hybrid composite was designed and prepared by a facile and high-efficiency sol-gel technology. Benefiting from the surface engineering optimization, high charge transfer, and low-energy diffusion barrier, the CoSe2@N-doped carbon aerogels exhibit a high pseudocapacitive property. Most importantly, the CoSe2 anode has been carefully investigated at different discharge/charge states by X-ray absorption near edge spectroscopy technologies and density functional theory (DFT) simulations, which deeply reveal the capacity fading mechanism and phase transition behavior.
Collapse
Affiliation(s)
- Yuelei Pan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Xudong Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Mengyao Gao
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yanbao Fu
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lunlun Gong
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hoda Ahmed
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Heping Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Vincent S Battaglia
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Fan S, Li G, Cai F, Yang G. Synthesis of Porous Ni-Doped CoSe 2 /C Nanospheres towards High-Rate and Long-Term Sodium-Ion Half/Full Batteries. Chemistry 2020; 26:8579-8587. [PMID: 32567104 DOI: 10.1002/chem.202000418] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Indexed: 11/11/2022]
Abstract
Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2 /C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2 /C is formed by the aggregation of many small particles (20-40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2 /C delivers superior rate performance (314.0 mA h g-1 at 20 A g-1 ), ultra-long cycle life (316.1 mA h g-1 at 10 A g-1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g-1 at 0.5 A g-1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2 /C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.
Collapse
Affiliation(s)
- Siwei Fan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Guangda Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Feipeng Cai
- Energy Research Institute of Shandong Academy of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Gai Yang
- Energy Research Institute of Shandong Academy of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| |
Collapse
|
18
|
Kim JH, Park GD, Kang YC. Amorphous iron oxide-selenite composite microspheres with a yolk-shell structure as highly efficient anode materials for lithium-ion batteries. NANOSCALE 2020; 12:10790-10798. [PMID: 32391842 DOI: 10.1039/d0nr01905d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Yolk-shell structured transition metal compounds have intrinsic structural advantages as anode materials and have been synthesized in a highly crystalline form. Thus, development of a synthesis process for a yolk-shell structure with an amorphous state, that displays high structural stability and fast ionic diffusion, is a notable research subject, with wide applications in fields such as energy storage. Herein, a novel approach for synthesizing amorphous materials with a yolk-shell structure using several facile phase transformation processes is presented. Crystalline iron oxide microspheres with a yolk-shell structure were formed by oxidation of the spray-dried product at 400 °C. Using the pitch/tetrahydrofuran solution infiltration method, pitch-infiltrated iron oxide was selenized at 350 °C to form a crystalline iron selenide-C composite. The following partial oxidation process at 375 °C produced a yolk-shell structured amorphous iron oxide-selenite composite. The amorphous characteristics, the yolk-shell structure, and the formation of a heterostructured interface from iron selenite during the initial cycle contributed to high electrochemical kinetic properties and excellent cycling performance of the iron oxide-selenite composite. The amorphous iron oxide-iron selenite yolk-shell microspheres exhibited enhanced reversible capacities, cycling stability, and remarkable electrochemical kinetic properties when compared to crystalline iron oxide.
Collapse
Affiliation(s)
- Ju Hyeong Kim
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | - Gi Dae Park
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
19
|
Huang X, Men S, Zheng H, Qin DD, Kang X. Highly Porous NiCoSe 4 Microspheres as High-Performance Anode Materials for Sodium-Ion Batteries. Chem Asian J 2020; 15:1456-1463. [PMID: 32157820 DOI: 10.1002/asia.202000132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 11/06/2022]
Abstract
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium-ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal-organic-frameworks with well-controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4 @NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni-Co-based metal-organic framework (NiCo-MOF) and characterized by scanning electron microscopy, transition electron microscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4 @NC composite exhibits a capacity of 325 mAh g-1 at a current density of 1 A g-1 , and 277.8 mAh g-1 at 10 A g-1 . Most importantly, the NiCoSe4 @NC retains a capacity of 293 mAh g-1 at 1 A g-1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.
Collapse
Affiliation(s)
- Xiaolian Huang
- College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shuang Men
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hui Zheng
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dong-Dong Qin
- College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Park GD, Kang YC. Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer. NANOSCALE 2020; 12:8404-8414. [PMID: 32239057 DOI: 10.1039/d0nr00592d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
One-dimensional (1D) nanofibers constructed with structurally stable nano-architecture and highly conductive carbon components can be employed to develop enhanced anodic materials for lithium-ion batteries. However, achieving an intricate combination of well-designed 1D-nanostructural materials and conductive carbon components for excellent lithium-ion storage capacity is a key challenge. In this study, novel and unique tube-in-tube structured nanofibers consisting of hollow metal oxide (CoFe2O4) nanospheres covered with a graphitic carbon (GC) layer were feasibly and successfully synthesized. A facile pitch solution infiltration method was applied to provide electrical conductivity in the tube-in-tube structure. Generally, mesophase pitch with liquid characteristics uniformly infiltrates the porous nanocrystals and transforms into graphitic layers around metallic CoFe2 alloys during the reduction process. The oxidation process that follows produces the hollow CoFe2O4 nanosphere by the nanoscale Kirkendall effect and the GC layer by selective decomposition of amorphous carbon layers. Hollow CoFe2O4 nanospheres comprising tube-in-tube structured nanofibers and GC layers are formed by pitch-derived carbon; these have improved structural stability and electrical conductivity resulting in excellent cycling and characteristics. Tube-in-tube structured nanofibers consisting of hollow CoFe2O4@GC nanospheres showed excellent long-cycle performance (682 mA h g-1 for the 1400th cycle at a high current density of 3.0 A g-1) and excellent rate capability (355 mA h g-1) even at an extremely high current density of 50 A g-1.
Collapse
Affiliation(s)
- Gi Dae Park
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | | |
Collapse
|
21
|
Zhou LL, Pan DS, Guo ZH, Song JL. Two-dimensional bimetallic CoFe selenite via metal-ion assisted self-assembly for enhanced oxygen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj04832a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 2D CoFe selenite crystals was used as an efficient OER catalyst, which was obtained in a high yield via a simple metal-ion self-assembly strategy under hydrothermal condition.
Collapse
Affiliation(s)
- Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|