1
|
Wang C, Wang K, Sun S, Wang Y, Wang Y, Li S. Interfacial [S─Cu─C] Bonds Induced π-d Electron Coupling Toward Modulating Charge Transfer for Efficient Solar Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407319. [PMID: 39544160 DOI: 10.1002/smll.202407319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Regulating the interfacial electric field to achieve rapid charge transfer is crucial for superior photoelectrochemical water splitting. Herein, the ultra-thin hydrogen-substituted graphdiyne (HsGDY) is precisely assembled on the surface of CdS nanorod array (Cu-CdS-HsGDY) by an in situ polymerization strategy. The strong π-d electron coupling is aroused by the delocalized π electrons of HsGDY and the delocalized d electrons of CdS through the interfacial [S─Cu─C] bonds. The strong interfacial electric field can effectively promote the charge localization distribution and reduce the charge transfer resistance. The optimized Cu-CdS-HsGDY photoanode obtain a photocurrent density as high as 4.83 mA cm-2 at 1.23 V versus reversible hydrogen electrode in neutral electrolyte solution under AM 1.5G illumination, which is 6.8 times that of the pristine CdS. Moreover, the photoanode maintains an initial photocurrent density of 84% within 4 h without any assistance of sacrificial agents, which is a rather competitive performance of similar sulfide photoanodes. The mechanism of strong π-d electron coupling on interfacial charge transfer and surface reaction kinetics is investigated by transient spectroscopy measurements, density functional theory calculation, and finite element simulation analysis. This work provides new insights into designing a reasonable interface structure to regulate charge transfer for achieve efficient PEC water splitting.
Collapse
Affiliation(s)
- Cheng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Device, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Kunpeng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Device, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Shengdong Sun
- Anhui Key Laboratory of Magnetic Functional Materials and Device, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Yuqiao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yongxiang Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Device, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Shikuo Li
- Anhui Key Laboratory of Magnetic Functional Materials and Device, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Guo Y, Zhang R, Zhang S, Hong H, Li P, Zhao Y, Huang Z, Zhi C. Steering sp-Carbon Content in Graphdiynes for Enhanced Two-Electron Oxygen Reduction to Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202401501. [PMID: 38589296 DOI: 10.1002/anie.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Compared to sp2-hybridized graphene, graphdiynes (GDYs) composed of sp and sp2 carbon are highly promising as efficient catalysts for electrocatalytic oxygen reduction into oxygen peroxide because of the high catalytic reactivity of the electron-rich sp-carbon atoms. The desired catalytic capacity of GDY, such as catalytic selectivity and efficiency, can theoretically be achieved by strategically steering the sp-carbon contents or the topological arrangement of the acetylenic linkages and aromatic bonds. Herein, we successfully tuned the electrocatalytic activity of GDYs by regulating the sp-to-sp2 carbon ratios with different organic monomer precursors. As the active sp-carbon atoms possess electron-sufficient π orbitals, they can donate electrons to the lowest unoccupied molecular orbital (LUMO) orbitals of O2 molecules and initiate subsequent O2 reduction, GDY with the high sp-carbon content of 50 at % exhibits excellent capability of catalyzing O2 reduction into H2O2. It demonstrates exceptional H2O2 selectivity of over 95.0 % and impressive performance in practical H2O2 production, Faraday efficiency (FE) exceeding 99.0 %, and a yield of 83.3 nmol s-1 cm-2. Our work holds significant importance in effectively steering the inherent properties of GDYs by purposefully adjusting the sp-to-sp2 carbon ratio and highlights their immense potential for research and applications in catalysis and other fields.
Collapse
Affiliation(s)
- Ying Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
3
|
Josline MJ, Ghods S, Kosame S, Choi JH, Kim W, Kim S, Chang S, Hyun SH, Kim SI, Moon JY, Park HG, Cho SB, Ju H, Lee JH. Uniform Synthesis of Bilayer Hydrogen Substituted Graphdiyne for Flexible Piezoresistive Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307276. [PMID: 38196162 DOI: 10.1002/smll.202307276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Graphdiyne (GDY) has garnered significant attention as a cutting-edge 2D material owing to its distinctive electronic, optoelectronic, and mechanical properties, including high mobility, direct bandgap, and remarkable flexibility. One of the key challenges hindering the implementation of this material in flexible applications is its large area and uniform synthesis. The facile growth of centimeter-scale bilayer hydrogen substituted graphdiyne (Bi-HsGDY) on germanium (Ge) substrate is achieved using a low-temperature chemical vapor deposition (CVD) method. This material's field effect transistors (FET) showcase a high carrier mobility of 52.6 cm2 V-1 s-1 and an exceptionally low contact resistance of 10 Ω µm. By transferring the as-grown Bi-HsGDY onto a flexible substrate, a long-distance piezoresistive strain sensor is demonstrated, which exhibits a remarkable gauge factor of 43.34 with a fast response time of ≈275 ms. As a proof of concept, communication by means of Morse code is implemented using a Bi-HsGDY strain sensor. It is believed that these results are anticipated to open new horizons in realizing Bi-HsGDY for innovative flexible device applications.
Collapse
Affiliation(s)
- Mukkath Joseph Josline
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Soheil Ghods
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Saikiran Kosame
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jun-Hui Choi
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Woongchan Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sein Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - SooHyun Chang
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Hwa Hyun
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seung-Il Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Hyeong Gi Park
- AI-Superconvergence KIURI Translational Research Center, Ajou University, School of Medicine, Suwon, 16499, South Korea
| | - Sung Beom Cho
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
4
|
Ma Y, Yang Q, Qi J, Zhang Y, Gao Y, Zeng Y, Jiang N, Sun Y, Qu K, Fang W, Li Y, Lu X, Zhi C, Qiu J. Surface atom knockout for the active site exposure of alloy catalyst. Proc Natl Acad Sci U S A 2024; 121:e2319525121. [PMID: 38564637 PMCID: PMC11009663 DOI: 10.1073/pnas.2319525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang110036, China
| | - Keqi Qu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhui Fang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xuejun Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
5
|
Zhu Y, Zhang S, Qiu X, Hao Q, Wu Y, Luo Z, Guo Y. Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis. Chem Sci 2024; 15:5061-5081. [PMID: 38577352 PMCID: PMC10988606 DOI: 10.1039/d4sc00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Graphdiyne (GDY)-based materials, owing to their unique structure and tunable electronic properties, exhibit great potential in the fields of catalysis, energy, environmental science, and beyond. In particular, GDY/metal oxide hybrid materials (GDY/MOs) have attracted extensive attention in energy and environmental catalysis. The interaction between GDY and metal oxides can increase the number of intrinsic active sites, facilitate charge transfer, and regulate the adsorption and desorption of intermediate species. In this review, we summarize the structure, synthesis, advanced characterization, small molecule activation mechanism and applications of GDY/MOs in energy conversion and environmental remediation. The intrinsic structure-activity relationship and corresponding reaction mechanism are highlighted. In particular, the activation mechanisms of reactant molecules (H2O, O2, N2, etc.) on GDY/MOs are systemically discussed. Finally, we outline some new perspectives of opportunities and challenges in developing GDY/MOs for efficient energy and environmental catalysis.
Collapse
Affiliation(s)
- Yuhua Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- School of Civil Engineering, Wuhan University Wuhan 430072 China
| | - Shuhong Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Xiaofeng Qiu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Quanguo Hao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Yan Wu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Zhu Luo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| |
Collapse
|
6
|
Zhang H, Li K, Guo X, Zhang L, Cao D, Cheng D. Rational Regulation of the Defect Density in Platinum Nanocrystals for Highly Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306694. [PMID: 38044277 DOI: 10.1002/smll.202306694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Constructing structural defects is a promising way to enhance the catalytic activity toward the hydrogen evolution reaction (HER). However, the relationship between defect density and HER activity has rarely been discussed. In this study, a series of Pt/WOx nanocrystals are fabricated with controlled morphologies and structural defect densities using a facile one-step wet chemical method. Remarkably, compared with polygonal and star structures, the dendritic Pt/WOx (d-Pt/WOx) exhibited a richer structural defect density, including stepped surfaces and atomic defects. Notably, the d-Pt/WOx catalyst required 4 and 16 mV to reach 10 mA cm-2, and its turnover frequency (TOF) values are 11.6 and 22.8 times higher than that of Pt/C under acidic and alkaline conditions, respectively. In addition, d-Pt/WOx//IrO2 displayed a mass activity of 5158 mA mgPt -1 at 2.0 V in proton exchange membrane water electrolyzers (PEMWEs), which is significantly higher than that of the commercial Pt/C//IrO2 system. Further mechanistic studies suggested that the d-Pt/WOx exhibited reduced number of antibonding bands and the lowest dz2-band center, contributing to hydrogen adsorption and release in acidic solution. The highest dz2-band center of d-Pt/WOx facilitated the adsorption of hydrogen from water molecules and water dissociation in alkaline medium. This work emphasizes the key role of the defect density in improving the HER activity of electrocatalysts.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kai Li
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Chemistry and Chemical Engineering, Tarim University, Alar, XinJiang, 843300, People's Republic of China
| |
Collapse
|
7
|
Hao W, Su X, Lu S, Wang J, Chen H, Chen Q, Wang B, Kong X, Jin C, Han G, Han Z, Müllen K, Chen Z. Synthesis and Self-Assembly of Ultrathin Holey Graphdiyne Nanosheets for Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302220. [PMID: 37183308 DOI: 10.1002/smll.202302220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Graphdiyne (GDY) is a fascinating graphene-like 2D carbon allotrope comprising sp and sp2 hybridized carbon atoms. However, GDY materials synthesized by solution-phase methods normally come as thick and porous films or amorphous powders with severely disordered stacking modes that obstruct macroscopic applications. Here, a facile and scalable synthesis of ultrathin holey graphdiyne (HGDY) nanosheets is reported via palladium/copper co-catalyzed homocoupling of 1,3,5-triethynylbenzene. The resulting freestanding 2D HGDY self-assembles into 3D foam-like networks which can in situ anchor clusters of palladium atoms on their surfaces. The Pd/HGDY hybrids exhibit high electrocatalytic activity and stability for the oxygen reduction reaction which outperforms that of Pt/C benchmark. Based on the ultrathin graphene-like sheets and their unique 3D interconnected macrostructures, Pd/HGDY holds great promise for practical electrochemical catalysis and energy-related applications.
Collapse
Affiliation(s)
- Wenjun Hao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Xinyu Su
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Shan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Jiaqian Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Hui Chen
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Qinlong Chen
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310030, China
| | - Bo Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Xueqian Kong
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310030, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Zhongkang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, D-55128, Ackermannweg 10, Mainz, Germany
| | - Zongping Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310030, China
| |
Collapse
|
8
|
Ha SJ, Hwang J, Kwak MJ, Yoon JC, Jang JH. Graphene-Encapsulated Bifunctional Catalysts with High Activity and Durability for Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300551. [PMID: 37052488 DOI: 10.1002/smll.202300551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process. In situ growth of graphene is utilized in a 3D-metal-coordinated hydrogel by introducing a catalytic lattice of transition metal alloys. Due to the direct growth of few-layer graphene on the metal alloy decorated 3d-carbon network, greatly reduced CCR is observed in a repetitive OER test. As a result, an efficient bifunctional electrocatalytic performance is achieved with a low ΔE value of 0.63 V and good electrochemical durability for 83 h at a current density of 10 mA cm-2 in an alkaline media. Moreover, graphene-encapsulated transition metal alloys on the nitrogen-doped carbon supporter exhibit an excellent catalytic effect and good durability in a Zn-air battery system. This study suggests a straightforward way to overcome the CCR of carbon-based materials for an electrochemical catalyst with wide application in energy conversion and energy storage devices.
Collapse
Affiliation(s)
- Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jongha Hwang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| |
Collapse
|
9
|
Yin J, Liang J, Yuan C, Zheng W. Facile Synthesis of Hydrogen-Substituted Graphdiyne Powder via Dehalogenative Homocoupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1018. [PMID: 36985912 PMCID: PMC10055811 DOI: 10.3390/nano13061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Graphdiyne and its analogs are a series of artificial two-dimensional nanomaterials with sp hybridized carbon atoms, which can be viewed as the insertion of two acetylenic units between adjacent aromatic rings, evenly expanded on a flat surface. Although developed in recent years, new synthetic strategies for graphdiyne analogs are still required. This work proposed a new method to prepare hydrogen-substituted graphdiyne powder via a dehalogenative homocoupling reaction. The polymerization was unanticipated while the initial goal was to synthesize a γ-graphyne analog via Sonogashira cross-coupling reaction. Compared with previous synthetic strategies, the reaction time was conspicuously shortened and the Pd catalyst was inessential. The powder obtained exhibited a porous structure and high electrocatalytic activity in the hydrogen/oxygen evolution reaction, which has the potential for application in electrochemical catalysis. The reported methodology provides an efficient synthetic strategy for large-scale preparation.
Collapse
|
10
|
Guo Y, Xu D, Li S, Han J, Yang Q, Xia Z, Xie G, Chen S, Gao S. Heteroatom Doping Synergistic Iron Nitride Induced Charge Redistribution of Carbon based Electrocatalyst with Boosted Oxygen Reduction Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuyu Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Dianyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Shuting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Jinxi Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P.R. China
| |
Collapse
|
11
|
Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat Commun 2022; 13:5227. [PMID: 36064713 PMCID: PMC9445080 DOI: 10.1038/s41467-022-32937-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.
Collapse
|
12
|
Chen Y, Zheng X, Cai J, Zhao G, Zhang B, Luo Z, Wang G, Pan H, Sun W. Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Chen
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jinyan Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhouxin Luo
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
13
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
14
|
Yang YF, Cederbaum LS. On the Endocircular Li@C16 System. Front Chem 2022; 10:813563. [PMID: 35186881 PMCID: PMC8854773 DOI: 10.3389/fchem.2022.813563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The endocircular Li@C16 is a promising system as it can form both a charge-separated donor-acceptor complex and a non-charge-separated van der waals complex. By employing the state-of-the-art equation-of-motion coupled-cluster method, our study shows that the carbon ring of this system possesses high flexibility and may undertake large distortions. Due to the intricate interaction between the guest Li+ cation and the negatively charged ring, this system can form several isomers possessing different ground states. The interesting electronic structure properties indicate its applicability as a catalyst candidate in the future.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Yang Q, Li L, Hussain T, Wang D, Hui L, Guo Y, Liang G, Li X, Chen Z, Huang Z, Li Y, Xue Y, Zuo Z, Qiu J, Li Y, Zhi C. Stabilizing Interface pH by N‐Modified Graphdiyne for Dendrite‐Free and High‐Rate Aqueous Zn‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qi Yang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering Hong Kong SAR 999077 China
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Liang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tanveer Hussain
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Donghong Wang
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Lan Hui
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ying Guo
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Guojin Liang
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Xinliang Li
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Ze Chen
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Zhaodong Huang
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yurui Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering Hong Kong SAR 999077 China
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 China
| |
Collapse
|
16
|
Guo Y, Zhang S, Zhang R, Wang D, Zhu D, Wang X, Xiao D, Li N, Zhao Y, Huang Z, Xu W, Chen S, Song L, Fan J, Chen Q, Zhi C. Electrochemical Nitrate Production via Nitrogen Oxidation with Atomically Dispersed Fe on N-Doped Carbon Nanosheets. ACS NANO 2022; 16:655-663. [PMID: 34936346 DOI: 10.1021/acsnano.1c08109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic N2 oxidation (NOR) into nitrate is a potential alternative to the emerging electrochemical N2 reduction (NRR) into ammonia to achieve a higher efficiency and selectivity of artificial N2 fixation, as O2 from the competing oxygen evolution reaction (OER) potentially favors the oxygenation of NOR, which is different from the parasitic hydrogen evolution reaction (HER) for NRR. Here, we develop an atomically dispersed Fe-based catalyst on N-doped carbon nanosheets (AD-Fe NS) which exhibits an exceptional catalytic NOR capability with a record-high nitrate yield of 6.12 μ mol mg-1 h-1 (2.45 μ mol cm-2 h-1) and Faraday efficiency of 35.63%, outperforming all reported NOR catalysts and most well-developed NRR catalysts. The isotopic labeling NOR test validates the N source of the resultant nitrate from the N2 electro-oxidation catalyzed by AD-Fe NS. Experimental and theoretical investigations identify Fe atoms in AD-Fe NS as active centers for NOR, which can effectively capture N2 molecules and elongate the N≡N bond by the hybridization between Fe 3d orbitals and N 2p orbitals. This hybridization activates N2 molecules and triggers the subsequent NOR. In addition, a NOR-related pathway has been proposed that reveals the positive effect of O2 derived from the parasitic OER on the NO3- formation.
Collapse
Affiliation(s)
- Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Daming Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuewan Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Diwen Xiao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| |
Collapse
|
17
|
Lu T, Deng X, Sun Q, Xiao J, He J, Wang K, Huang C. 3D Carbiyne Nanospheres Boosting Excellent Lithium and Sodium Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106328. [PMID: 34873841 DOI: 10.1002/smll.202106328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Reasonable design of electrode materials with specific morphology and structure can efficiently improve the metal ions storage and transmission properties of metal ion batteries. Here the preparation of spirobifluorene-based three-dimensional carbiyne nanosphere (SBFCY-NS) that is composed of spirobifluorene (SBF) and alkyne bonds is reported. Benefiting from the rigid spatial structure of SBF, numerous precursors are coupled through the connection of acetylene bonds, extending to form solid nanospheres. Abundant storage spaces and convenient multi-directional transmission paths for metal ions are available inside the three-dimensional (3D) carbiyne structure. Thus, SBFCY-NS is applied as efficient anode for lithium-ion battery and sodium-ion battery. The good stability of SBFCY-NS-based electrode and its improved Coulombic efficiency can be attributed to the special morphology of nanospheres, which can easily form thin and stable solid electrolyte interface film on the surface. Those results further promote the preparation of spherical carbon-based materials with abundant pores that can be applied in the field of electrodes.
Collapse
Affiliation(s)
- Tiantian Lu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xin Deng
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Quanhu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Jianjiang He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Kun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Yang Q, Li L, Hussain T, Wang D, Hui L, Guo Y, Liang G, Li X, Chen Z, Huang Z, Li Y, Xue Y, Zuo Z, Qiu J, Li Y, Zhi C. Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-ion Batteries. Angew Chem Int Ed Engl 2021; 61:e202112304. [PMID: 34799952 DOI: 10.1002/anie.202112304] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Zn dendrite issue was intensively studied via tuning zinc ion flux. pH change seriously influences dendrite formation, while its importance has not been revealed. Here, we construct a N-modification graphdiyne interface (NGI) to stabilize pH by mediating hydrated zinc ion desolvation. Operando pH detection reveals pH stabilization by NGI. This works with pores in NGI to achieve dendrite-free Zn deposition and an increased symmetric cell lifespan by 116 times. Experimental and theoretical results owe pH stabilization to desolvation with a reduced activation energy achieved by electron transfer from solvation sheath to N atom. The efficient desolvation ensures that electron directly transfers from substrate to Zn2+ (rather than the coordinated H2O), avoiding O-H bond splitting. Hence, Zn-V6O13 battery achieves a long lifespan at 20.65 mA cm-2 and 1.07 mAh cm-2. This work reveals the significance of interface pH and provides a new approach to address Zn dendrite issue.
Collapse
Affiliation(s)
- Qi Yang
- City University of Hong Kong, Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China, HONG KONG
| | - Liang Li
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Tanveer Hussain
- The University of Queensland, School of Chemical Engineering, AUSTRALIA
| | - Donghong Wang
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Lan Hui
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Ying Guo
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Guojin Liang
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Xinliang Li
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Ze Chen
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Zhaodong Huang
- City University of Hong Kong, Department of Physics and Materials Science, HONG KONG
| | - Yongjun Li
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Yurui Xue
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Zicheng Zuo
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Jieshan Qiu
- Beijing University of Chemical Technology, State Key Laboratory of Chemical Resource Engineering, CHINA
| | - Yuliang Li
- Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Chunyi Zhi
- City University of Hong Kong, Department of Physics and Materials Science, Kowloon, 999077, Hong Kong, HONG KONG
| |
Collapse
|
19
|
Gao L, Yang Z, Li X, Huang C. Post-modified Strategies of Graphdiyne for Electrochemical Applications. Chem Asian J 2021; 16:2185-2194. [PMID: 34196117 DOI: 10.1002/asia.202100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.
Collapse
Affiliation(s)
- Lei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Ze Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Wu J, Liang J, Zhang Y, Zhao X, Yuan C. Synthesis of hydrogen-substituted graphdiynes via dehalogenative homocoupling reactions. Chem Commun (Camb) 2021; 57:5036-5039. [PMID: 33881054 DOI: 10.1039/d1cc00453k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method is introduced to prepare hydrogen-substituted graphdiynes (HsGDYs) via the dehalogenative homocoupling of terminal alkynyl bromides. Compared with previous synthetic strategies, the reaction conditions are moderate and the time is shortened. HsGDYs exhibit porous structures and hydrogen/oxygen evolution reaction (HER/OER) catalytic activity, endowing applications in electrochemical catalysis.
Collapse
Affiliation(s)
- Jiasheng Wu
- College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | | | | | | | | |
Collapse
|
21
|
Kong S, Cai D, Li G, Xu X, Zhou S, Ding X, Zhang Y, Yang S, Zhou X, Nie H, Huang S, Peng P, Yang Z. Hydrogen-substituted graphdiyne/graphene as an sp/sp 2 hybridized carbon interlayer for lithium-sulfur batteries. NANOSCALE 2021; 13:3817-3826. [PMID: 33565536 DOI: 10.1039/d0nr07878f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To overcome the shuttle effect in lithium-sulfur (Li-S) batteries, an sp/sp2 hybridized all-carbon interlayer by coating graphene (Gra) and hydrogen-substituted graphdiyne (HsGDY) with a specific surface area as high as 2184 m2 g-1 on a cathode is designed and prepared. The two-dimensional network and rich pore structure of HsGDY can enable the fast physical adsorption of lithium polysulfides (LiPSs). In situ Raman spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) combined with density functional theory (DFT) computations confirm that the acetylenic bonds in HsGDY can trap the Li+ of LiPSs owing to the strong adsorption of Li+ by acetylenic active sites. The strong physical adsorption and chemical anchoring of LiPSs by the HsGDY materials promote the conversion reaction of LiPSs to further mitigate the shuttling problem. As a result, Li-S batteries integrated with the all-carbon interlayers exhibit excellent cycling stability during long-term cycling with an attenuation rate of 0.089% per cycle at 1 C over 500 cycles.
Collapse
Affiliation(s)
- Suzhen Kong
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Guifa Li
- School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Xiangju Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Suya Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Xinwei Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yongqin Zhang
- School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China. and College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Peng
- School of Material Science and Engineering, Hunan University, Hunan, 410082, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Chen S, Cui M, Yin Z, Zeng Q, Cao Z, Xiong J, Mi L, Li Y. Confined Synthesis of N, P Co–Doped 3D Hierarchical Carbons as High‐Efficiency Oxygen Reduction Reaction Catalysts for Zn–Air Battery. ChemElectroChem 2020. [DOI: 10.1002/celc.202001257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siru Chen
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou China 450007
| | - Ming Cui
- School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin China 124221
| | - Zehao Yin
- School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin China 124221
| | - Qi Zeng
- School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin China 124221
| | - Zhenyu Cao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou China 450007
| | - Jiabin Xiong
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou China 450007
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou China 450007
| | - Yanqiang Li
- School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin China 124221
| |
Collapse
|
23
|
Abstract
Graphdiyne (GDY) is a two-dimensional (2D) electron-rich full-carbon planar material composed of sp2- and sp-hybridized carbon atoms, which features highly conjugated structures, uniformly distributed pores, tunable electronic characteristics and high specific surface areas. The synthesis strategy of GDY by facile coupling reactions under mild conditions provides more convenience for the functional modification of GDY and offers opportunities for realizing the special preparation of GDY according to the desired structure and unique properties. These structural characteristics and excellent physical and chemical properties of GDY have attracted increasing attention in the field of electrocatalysis. Herein, the research progress in the synthesis of atomic-level functionalized GDYs and their electrocatalytic applications are summarized. Special attention was paid to the research progress of metal-atom-anchored and nonmetallic-atom-doped GDYs for applications in the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) catalytic processes. In addition, several potential development prospects and challenges of these 2D highly conjugated electron-rich full-carbon materials in the field of electrocatalysis are presented.
Collapse
|
24
|
Guo Y, Wang T, Yang Q, Li X, Li H, Wang Y, Jiao T, Huang Z, Dong B, Zhang W, Fan J, Zhi C. Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia on Surface Termination Modified Ti 3C 2T x MXene Nanosheets. ACS NANO 2020; 14:9089-9097. [PMID: 32551498 DOI: 10.1021/acsnano.0c04284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MXene-based catalysts exhibit extraordinary advantages for many catalysis reactions, such as the hydrogen evolution and oxygen reduction reactions. However, MXenes exhibit inadequate catalytic activity for the electrochemical nitrogen reduction reaction (NRR) because they are typically terminated with inactive functional groups, F* and OH*, which mask the active metal sites for N2 binding. Here we modified the surface termination of MXene (Ti3C2Tx) nanosheets to achieve high surface catalytic reactivity for the NRR by ironing out inactive F*/OH* terminals to expose more active sites and by introducing Fe to greatly reduce the surface work function. The optimally performing catalyst (MXene/TiFeOx-700) achieved excellent Faradaic efficiency of 25.44% and an NH3 yield rate of 2.19 μg/cm2·h (21.9 μg/mgcat·h), outperforming all reported MXene-based NRR catalysts. Our work provides a feasible strategy for rationally improving the surface reactivity of MXene-based catalysts for efficient electrochemical conversion of N2 to NH3.
Collapse
Affiliation(s)
- Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yukun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Tianpeng Jiao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Binbin Dong
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
25
|
Hao MG, Dun RM, Su YM, Li WM. Highly active Fe-N-doped porous hollow carbon nanospheres as oxygen reduction electrocatalysts in both acidic and alkaline media. NANOSCALE 2020; 12:15115-15127. [PMID: 32657297 DOI: 10.1039/d0nr02763d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical iron-nitrogen-codoped porous hollow carbon spheres have been synthesized by using melamine-formaldehyde (MF) resin spheres as templates, nitrogen sources and pore-forming agents. FeCl3, 1,10-phenanthroline and carbon black were used as iron, nitrogen and carbon sources. The as-obtained porous hollow carbon spheres possess a high specific surface area of 807 m2 g-1, as well as exhibited excellent electrocatalytic activity for the oxygen reduction reaction (ORR) in both acidic and alkaline media. In 0.1 M HClO4 solution, the onset potential was 0.857 V (vs. RHE) and the half-wave potential was 0.715 V, which are only 78 and 80 mV less than those of the 20% Pt/C catalyst, respectively. In addition, in 0.1 M KOH solution, the onset potential was 1.017 V and the half-wave potential was 0.871 V for the ORR, which are 22 and 28 mV more positive than those of the Pt/C catalyst, respectively. Meanwhile, the catalyst also exhibited excellent methanol tolerance and long-term durability with a more effective four-electron pathway compared to the 20% Pt/C catalyst in both acidic and alkaline media. When used as an air-cathode catalyst for a Zn-air battery, the maximum power density of a Zn-air battery with the MF-C-Fe-Phen-800 cathode was 235 mW cm-2 at a high current density of 371 mA cm-2, and a high open-circuit potential of 1.654 V, superior to that of Pt/C (199 mW cm-2, 300 mA cm-2, 1.457 V). A series of designed experiments suggested that the remarkable performance was attributed to the high specific area, hollow carbon spheres, unique hierarchical micro-mesoporous structures, high contents of pyridinic-N and graphitic-N. The superiority of the as-prepared catalyst makes it promising for use in practical applications.
Collapse
Affiliation(s)
- Meng-Geng Hao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong-Min Dun
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Miao Su
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Wen-Mu Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| |
Collapse
|
26
|
Zhao Y, Chen Z, Mo F, Wang D, Guo Y, Liu Z, Li X, Li Q, Liang G, Zhi C. Aqueous Rechargeable Metal-Ion Batteries Working at Subzero Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002590. [PMID: 33437581 PMCID: PMC7788594 DOI: 10.1002/advs.202002590] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Indexed: 05/30/2023]
Abstract
Aqueous rechargeable metal-ion batteries (ARMBs) represent one of the current research frontiers due to their low cost, high safety, and other unique features. Evolving to a practically useful device, the ARMBs must be adaptable to various ambient, especially the cold weather. While much effort has been made on organic electrolyte batteries operating at low temperatures, the study on low-temperature ARMBs is still in its infancy. The challenge mainly comes from water freezing at subzero temperatures, resulting in dramatically retarded kinetics. Here, the freezing behavior of water and its effects on subzero performances of ARMBs are first discussed. Then all strategies used to enhance subzero temperature performances of ARMBs by associating them with battery kinetics are summarized. The subzero temperature performances of ARMBs and organic electrolyte batteries are compared. The final section presents potential directions for further improvements and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Yuwei Zhao
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Ze Chen
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Funian Mo
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Donghong Wang
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Ying Guo
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Zhuoxin Liu
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Xinliang Li
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Qing Li
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Guojin Liang
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Chunyi Zhi
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
- Centre for Functional PhotonicsCity University of Hong KongKowloon999077Hong Kong
| |
Collapse
|