1
|
Zhang Y, Tian H, Li H, Yoon C, Nelson RA, Li Z, Watanabe K, Taniguchi T, Smirnov D, Kawakami RK, Goldberger JE, Zhang F, Lau CN. Quantum octets in high mobility pentagonal two-dimensional PdSe 2. Nat Commun 2024; 15:761. [PMID: 38278796 PMCID: PMC10817936 DOI: 10.1038/s41467-024-44972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Two-dimensional (2D) materials have drawn immense interests in scientific and technological communities, owing to their extraordinary properties and their tunability by gating, proximity, strain and external fields. For electronic applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large scale synthesis. Here we demonstrate air stable field effect transistors using atomically thin few-layer PdSe2 sheets that are sandwiched between hexagonal BN (hBN), with large saturation current > 350 μA/μm, and high field effect mobilities of ~ 700 and 10,000 cm2/Vs at 300 K and 2 K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations that persist at all densities, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Haidong Tian
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Huaixuan Li
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Chiho Yoon
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Ryan A Nelson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Joshua E Goldberger
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Chun Ning Lau
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Chen H, Kuklin A, Xiao J, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang Y, Ågren H, Gao L, Zhang H. Direct Observation of Photon Induced Giant Band Renormalization in 2D PdSe 2 Dichalcogenide by Transient Absorption Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302760. [PMID: 37469206 DOI: 10.1002/smll.202302760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Indexed: 07/21/2023]
Abstract
Insight into fundamental light-matter interaction as well as underlying photo-physical processes is crucial for the development of novel optoelectronic devices. Palladium diselenide (PdSe2 ), an important representative of emerging 2D noble metal dichalcogenides, has gain considerable attention owing to its unique optical, physical, and chemical properties. In this study, 2D PdSe2 nanosheets (NSs) are prepared using the liquid-phase exfoliation method. A broadband carrier relaxation dynamics from visible to near-infrared bands are revealed using a time-resolved transient absorption spectrometer, giving results that indicate band filling and bandgap renormalization (BGR) effects in the 2D PdSe2 NSs. The observed blue-shift of the transient absorption spectra at the primary stage and the subsequent red-shift can be ascribed to this BGR effect. These findings reveal the many-body character of the 2D TMDs material and may hold keys for applications in the field of optoelectronics and ultrafast photonics.
Collapse
Affiliation(s)
- Hualong Chen
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Artem Kuklin
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-75120, Sweden
| | - Jing Xiao
- College of Physics and Electronic Engineering, Taishan University, Taian, 271000, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Yule Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-75120, Sweden
| | - Lingfeng Gao
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Zhang H, Wu Y, Huang Z, Shen X, Li B, Zhang Z, Wu R, Wang D, Yi C, He K, Zhou Y, Liu J, Li B, Duan X. Synthesis of Two-Dimensional MoO 2 Nanoplates with Large Linear Magnetoresistance and Nonlinear Hall Effect. NANO LETTERS 2023; 23:2179-2186. [PMID: 36862981 DOI: 10.1021/acs.nanolett.2c04721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials with large linear magnetoresistance (LMR) are very interesting owing to their potential application in magnetic storage or sensor devices. Here, we report the synthesis of 2D MoO2 nanoplates grown by a chemical vapor deposition (CVD) method and observe large LMR and nonlinear Hall behavior in MoO2 nanoplates. As-obtained MoO2 nanoplates exhibit rhombic shapes and high crystallinity. Electrical studies indicate that MoO2 nanoplates feature a metallic nature with an excellent conductivity of up to 3.7 × 107 S m-1 at 2.5 K. MoO2 nanoplates display a large LMR of up to 455% at 3 K and -9 T. A thickness-dependent LMR analysis suggests that LMR values increase upon increasing the thickness of nanoplates. Besides, nonlinearity has been found in the magnetic-field-dependent Hall resistance, which decreases with increasing temperatures. Our studies highlight that MoO2 nanoplates are promising materials for fundamental studies and potential applications in magnetic storage devices.
Collapse
Affiliation(s)
- Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yangwu Wu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ziwei Huang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiaohua Shen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zucheng Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ruixia Wu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Di Wang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Chen Yi
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Kun He
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yucheng Zhou
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jialing Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Bo Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
4
|
Lee M, Kim TW, Park CY, Lee K, Taniguchi T, Watanabe K, Kim MG, Hwang DK, Lee YT. Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications. NANO-MICRO LETTERS 2022; 15:22. [PMID: 36580180 PMCID: PMC9800667 DOI: 10.1007/s40820-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional van der Waals (2D vdW) material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties. In this study, we demonstrate graphene (Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors (FET). Unlike conventional FET operation, our Gr-bridge devices exhibit non-classical transfer characteristics (humped transfer curve), thus possessing a negative differential transconductance. These phenomena are interpreted as the operating behavior in two series-connected FETs, and they result from the gate-tunable contact capacity of the Gr-bridge layer. Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow- and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics. Thus, we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Tae Wook Kim
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Yong Park
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Kimoon Lee
- Department of Physics, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Min-Gu Kim
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Information and Communication Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Young Tack Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Electronic Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Wu J, Ma H, Zhong C, Wei M, Sun C, Ye Y, Xu Y, Tang B, Luo Y, Sun B, Jian J, Dai H, Lin H, Li L. Waveguide-Integrated PdSe 2 Photodetector over a Broad Infrared Wavelength Range. NANO LETTERS 2022; 22:6816-6824. [PMID: 35787028 DOI: 10.1021/acs.nanolett.2c02099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrid integration of van der Waals materials on a photonic platform enables diverse exploration of novel active functions and significant improvement in device performance for next-generation integrated photonic circuits, but developing waveguide-integrated photodetectors based on conventionally investigated transition metal dichalcogenide materials at the full optical telecommunication bands and mid-infrared range is still a challenge. Here, we integrate PdSe2 with silicon waveguide for on-chip photodetection with a high responsivity from 1260 to 1565 nm, a low noise-equivalent power of 4.0 pW·Hz-0.5, a 3-dB bandwidth of 1.5 GHz, and a measured data rate of 2.5 Gbit·s-1. The achieved PdSe2 photodetectors provide new insights to explore the integration of novel van der Waals materials with integrated photonic platforms and exhibit great potential for diverse applications over a broad infrared range of wavelengths, such as on-chip sensing and spectroscopy.
Collapse
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yan Xu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
| | - Ye Luo
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Boshu Sun
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jialing Jian
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hao Dai
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
6
|
Zhang L, Yang T, Feng YP, Wee ATS, Wang Z. MBE-grown ultrathin PtTe 2 films and their layer-dependent electronic structures. NANOSCALE 2022; 14:7650-7658. [PMID: 35548886 DOI: 10.1039/d2nr00944g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2D platinum ditelluride (PtTe2) has received significant attention for 2D photodetector applications due to its novel physical properties. One of the critical factors that affect device performance is the film quality. Here, using molecular beam epitaxy, we investigate the role of growth temperature in determining the film quality of PtTe2 on highly oriented pyrolytic graphite, and unveil its layer-dependent electronic properties by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy/spectroscopy (STM/STS), as well as density functional theory (DFT) calculations. At low growth temperature (≤250 °C), the PtTe2 film prefers a stack of the monolayer and bilayer, while at ≈300 °C large-area continuous bilayer films are formed. In contrast, high growth temperature (>300 °C) leads to the formation of thick films with high Te deficiency and poor crystallinity. Theoretical calculations confirm the higher thermal stability of bilayer PtTe2 over other layer numbers above a critical crystal size of ≈100 nm2. STS shows that PtTe2 is a semiconductor in the monolayer with a bandgap of 0.80 ± 0.05 eV, and changes to a semimetal from the bilayer. DFT calculations support our experimental results and suggest an indirect bandgap structure of the monolayer. This work provides a systematic study of the layer-dependent electronic structure of 2D PtTe2, and demonstrates that with appropriate substrate and growth temperature choices, high-quality ultrathin PtTe2 films can be obtained, important for device applications.
Collapse
Affiliation(s)
- Lei Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Zhuo Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Bravo S, Pacheco M, Correa JD, Chico L. Topological bands in PdSe 2 pentagonal monolayer. Phys Chem Chem Phys 2022; 24:15749-15755. [DOI: 10.1039/d2cp01822e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure of monolayer pentagonal palladium diselenide (PdSe2) is analyzed from the topological band theory perspective. Employing first-principles calculations, effective models and symmetry indicators we find that the low-lying...
Collapse
|
8
|
Chang YR, Nishimura T, Nagashio K. Thermodynamic Perspective on the Oxidation of Layered Materials and Surface Oxide Amelioration in 2D Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43282-43289. [PMID: 34478258 DOI: 10.1021/acsami.1c13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface oxidation is an unneglectable problem for 2D semiconductors because it hinders the practical application of 2D material-based devices. In this research, the oxidation of layered materials is investigated by a thermodynamic approach to verify their oxidation tendency. It was found that almost all 2D materials are thermodynamically unstable in the presence of oxygen at room temperature. Two potential solutions for surface oxidation are proposed in this work: (i) the conversion of the surface oxides to functional oxides through the deposition of active metals and (ii) the recovery of original 2D materials from the surface oxides by 2D material heterostructure formation with the same chalcogen group. Supported by thermodynamic calculations, both approaches are feasible to ameliorate the surface oxides of 2D materials by the appropriate selection of metals for deposition or 2D materials for heterostructure formation. Thermodynamic data of 64 elements and 75 2D materials are included and compared in this research, which can improve gate insulator or electrode contact material selection in 2D devices to solve the surface oxidation issue. For instance, yttrium and titanium are good candidates for surface oxide conversion, while zirconium and hafnium chalcogenide can trigger the recovery of original 2D materials from their surface oxides. The systematic diagrams presented in this work can serve as a guideline for considering surface oxidation in future device fabrication from various 2D materials.
Collapse
Affiliation(s)
- Yih-Ren Chang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Tomonori Nishimura
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kosuke Nagashio
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Wu D, Mo Z, Han Y, Lin P, Shi Z, Chen X, Tian Y, Li XJ, Yuan H, Tsang YH. Fabrication of 2D PdSe 2/3D CdTe Mixed-Dimensional van der Waals Heterojunction for Broadband Infrared Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41791-41801. [PMID: 34431296 DOI: 10.1021/acsami.1c11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Room-temperature infrared photodetectors are in great demand because of their vitally important applications in the military and civilian fields, which has inspired intensive studies in recent decades. Here, we present the fabrication of a large-size PdSe2/CdTe mixed-dimensional van der Waals (vdW) heterojunction for room-temperature infrared detection. Taking advantage of the wide light absorption of the multilayer PdSe2, high-quality vdW interface, and unique mixed-dimensional device geometry, the present device is capable of detecting an ultrawide light up to long-wave infrared (LWIR) of 10.6 μm at room temperature. In addition, our photodetector exhibits a good capability to follow short pulse infrared signals with a quick response rate of 70 ns, a large responsivity of 324.7 mA/W, and a reasonable specific detectivity of 3.3 × 1012 Jones. Significantly, the assembled photodetector is highly sensitive to a polarized infrared light signal with a decent polarization sensitivity of 4.4. More importantly, an outstanding LWIR imaging capability based on the PdSe2/CdTe vdW heterojunction at nonrefrigeration condition is demonstrated. Our work paves a novel route for the design of highly polarization-sensitive, room-temperature infrared photodetectors.
Collapse
Affiliation(s)
- Di Wu
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhiheng Mo
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Yanbing Han
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Lin
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhifeng Shi
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Xu Chen
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Yongtao Tian
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Jian Li
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Huiyu Yuan
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Yuen Hong Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Zhu R, Gao Z, Liang Q, Hu J, Wang JS, Qiu CW, Wee ATS. Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37527-37534. [PMID: 34333972 DOI: 10.1021/acsami.1c10500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropy in crystals usually has remarkable consequences in two-dimensional (2D) materials, for example, black phosphorus, PdSe2, and SnS, arising from different lattice periodicities along different crystallographic directions. Electrical anisotropy has been successfully demonstrated in 2D materials, but anisotropic magnetoresistance in 2D materials is rarely studied. Herein, we report anisotropic magnetoresistance in layered nonmagnetic semiconducting PdSe2 flakes. Anisotropic magnetoresistance along the two crystalline axes under a perpendicular magnetic field is demonstrated, and the magnetoresistance along the a-axis is apparently different from the magnetoresistance along the b-axis. The magnetoresistance can also be flexibly tuned by applying a gate voltage, leveraging the semiconductor properties of PdSe2. The computed anisotropic electronic density of states and electronic mobility with ab initio density functional calculations support the anisotropic and measured magnetoresistance. Our findings advance the understanding of magnetoresistance in anisotropic transition-metal dichalcogenides and pave the way for potential applications in anisotropic spintronic devices.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Zhibin Gao
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qijie Liang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Songshan Lake Materials Laboratory, Songshan Lake Mat Lab, Dongguan 523808, China
| | - Junxiong Hu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Jian-Sheng Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
11
|
Zhussupbekov K, Cullen CP, Zhussupbekova A, Shvets IV, Duesberg GS, McEvoy N, Ó Coileáin C. Electronic and structural characterisation of polycrystalline platinum disulfide thin films. RSC Adv 2020; 10:42001-42007. [PMID: 35516737 PMCID: PMC9057923 DOI: 10.1039/d0ra07405e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
We employ a combination of scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) to investigate the properties of layered PtS2, synthesised via thermally assisted conversion (TAC) of a metallic Pt thin film. STM measurements reveal the 1T crystal structure of PtS2, and the lattice constant is determined to be 3.58 ± 0.03 Å. STS allowed the electronic structure of individual PtS2 crystallites to be directly probed and a bandgap of ∼1.03 eV was determined for a 3.8 nm thick flake at liquid nitrogen temperature. These findings substantially expand understanding of the atomic and electronic structure of PtS2 and indicate that STM is a powerful tool capable of locally probing non-uniform polycrystalline films, such as those produced by TAC. Prior to STM/STS measurements the quality of synthesised TAC PtS2 was analysed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These results are of relevance to applications-focussed studies centred on PtS2 and may inform future efforts to optimise the synthesis conditions for thin film PtS2. Semiconducting thin-film polycrystalline PtS2 is characterised by atomically resolved scanning tunnelling microscopy and spectroscopy.![]()
Collapse
Affiliation(s)
- Kuanysh Zhussupbekov
- School of Physics, Trinity College Dublin Dublin 2 Ireland .,AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland
| | - Conor P Cullen
- AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland .,School of Chemistry, Trinity College Dublin Dublin 2 D02 PN40 Ireland
| | - Ainur Zhussupbekova
- School of Physics, Trinity College Dublin Dublin 2 Ireland .,AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland
| | - Igor V Shvets
- School of Physics, Trinity College Dublin Dublin 2 Ireland .,AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München 85579 Neubiberg Germany
| | - Niall McEvoy
- AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland .,School of Chemistry, Trinity College Dublin Dublin 2 D02 PN40 Ireland
| | - Cormac Ó Coileáin
- AMBER Centre, CRANN Institute, Trinity College Dublin Dublin 2 Ireland .,School of Chemistry, Trinity College Dublin Dublin 2 D02 PN40 Ireland
| |
Collapse
|