1
|
Kim KH, Seo SE, Lee SH, Kwon OS. Bioelectronics for bitterness-based phytocompound detection using human bitter taste receptor nanodiscs. Biosens Bioelectron 2024; 264:116679. [PMID: 39167889 DOI: 10.1016/j.bios.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Various organisms produce several products to defend themselves from the environment and enemies. These natural products have pharmacological and biological activities and are used for therapeutic purposes, retaining bitter taste because of chemical defense mechanisms. Cnicin is a plant-derived bitter sesquiterpene lactone with pharmacological characteristics such as anti-bacterial, anti-myeloma, anti-cancer, anti-tumor, anti-oxidant, anti-inflammatory, allelopathic, and cytotoxic properties. Although many studies have focused on cnicin detection, they have limitations and novel cnicin-detecting strategies are required. In this study, we developed the bioelectronics for screening cnicin using its distinct taste. hTAS2R46 was produced using an Escherichia coli expression system and reconstituted into nanodiscs (NDs). The binding sites and energy between hTAS2R46 and cnicin were investigated using biosimulations. hTAS2R46-NDs were combined with a side-gated graphene micropatterned field-effect transistor (SGMFET) to construct hTAS2R46-NDs bioelectronics. The construction was examined by chemical and electrical characterization. The developed system exhibited unprecedented performance, 10 fM limit of detection, rapid response time (within 10 s), 0.1354 pM-1 equilibrium constant, and high selectivity. Furthermore, the system was stable as the sensing performance was maintained for 15 days. Therefore, the hTAS2R46-NDs bioelectronics can be utilized to screen cnicin from natural products and applied in the food and drug industries.
Collapse
Affiliation(s)
- Kyung Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sung Eun Seo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, 15588, Ansan, Republic of Korea.
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Jeong JY, Kim SO, Bang S, Choi Y, Shin J, Choi D, Lee SE, Park TH, Hong S. Adaptive biosensing platform using immune cell-based nanovesicles for food allergen detection. Biosens Bioelectron 2023; 222:114914. [PMID: 36456386 DOI: 10.1016/j.bios.2022.114914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Inspired by an adaptive immune system, we have developed a bioelectronic sensing platform which relies on nanovesicles for a signal amplification and can be easily adapted for the detection of new food allergens. In this work, nanovesicles with anti-immunoglobulin E (anti-IgE) antibody receptors were extracted from immune cells and immobilized on a carbon nanotube-based transistor to build a highly sensitive and selective biosensing platform. Our sensor could detect peanut allergen, arachis hypogaea 2 (Ara h 2), down to 0.1 fM and selectively discriminate target allergens in real food samples such as peanut and egg white. As a proof of concept, we demonstrated the detection of different target molecules using the same nanovesicles linked with different antibodies. Our sensor platform was also utilized to quantitatively evaluate the effect of allergy drug such as cromolyn. In this regard, our strategy can be utilized for basic research and versatile applications in food and pharmacological industries.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Sunwoo Bang
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Danmin Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea.
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Choi Y, Lee S, Lee S, Hong S, Kwon HW. Bioelectronic Tongues Mimicking Insect Taste Systems for Real-Time Discrimination between Natural and Artificial Sweeteners. ACS Sens 2022; 7:3682-3691. [PMID: 36455033 DOI: 10.1021/acssensors.2c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A bioelectronic tongue (B-ET) mimicking insect taste systems is developed for the real-time detection and discrimination of natural and artificial sweeteners. Here, a carbon nanotube field-effect transistor (CNT-FET) was hybridized with nanovesicles including the honeybee sugar taste receptor, gustatory receptor 1 of Apis mellifera (AmGr1). This strategy allowed us to detect glucose, a major component of nectar, down to 100 fM in real time and identify sweet tastants from other tastants. It could also be utilized for the detection of glucose in dextrose tablet solutions. Importantly, we demonstrated the discrimination between natural and artificial sweeteners down to 10 pM even in real beverages such as decaffeinated coffee using our hybrid platform. In this respect, our B-ET mimicking insect taste systems can be a powerful tool for various applications such as food screening and basic studies on insect taste systems.
Collapse
Affiliation(s)
- Yoonji Choi
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul08826, Republic of Korea
| | - Sujin Lee
- Department of Life Sciences & Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Republic of Korea
| | - Seungha Lee
- Department of Life Sciences & Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul08826, Republic of Korea
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Republic of Korea
| |
Collapse
|
4
|
Park I, Yang I, Cho Y, Choi Y, Shin J, Shekhar S, Lee SH, Hong S. Evaluation of site-selective drug effects on GABA receptors using nanovesicle-carbon nanotube hybrid devices. Biosens Bioelectron 2022; 200:113903. [PMID: 34973564 DOI: 10.1016/j.bios.2021.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Site-selective drug effects on the ion-channel activities of γ-aminobutyric acid type A (GABAA) receptors are evaluated by using a nanovesicle-carbon nanotube hybrid device. Here, nanovesicles containing GABAA receptors are immobilized on the channel region of a carbon nanotube field-effect transistor. The receptor responses of this hybrid device to GABA are detected with a high sensitivity down to ∼1 aM even in the presence of other neurotransmitters. Further, sensitivity differences between two GABAA-receptor-subunit compositions of α5β2γ2 and α1β2γ2 are assessed by normalizing the dose-dependent responses obtained from these hybrid devices. Specifically, the GABA concentration that produces 50% of maximal response (EC50) is obtained as ∼10 pM for α5β2γ2 subunits and ∼1 nM for α1β2γ2 subunits of GABAA receptor. Significantly, the potency profiles of both antagonist and agonist of GABAA receptor can be evaluated by analyzing EC50 values in the presence and absence of those drugs. A competitive antagonist increases the EC50 value of GABA by binding to the same site as GABA, while an allosteric agonist reduces it by binding to a different site. These results indicate that this hybrid device can be a powerful tool for the evaluation of candidate drug substances modulating GABA-mediated neurotransmission.
Collapse
Affiliation(s)
- Inkyoung Park
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inwoo Yang
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shashank Shekhar
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|