1
|
Yan Y, Mei R, Ma J, Huang Y, Zhu Y, Lang Z, Li C, Tang H, Zhang W, Lu J, Schmidt OG, Zhang K, Zhu M. Modular Design of Functional Glucose Monomer and Block Co-Polymer toward Stable Zn Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400292. [PMID: 38659378 DOI: 10.1002/smll.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Aqueous Zn batteries employing mildly acidic electrolytes have emerged as promising contenders for safe and cost-effective energy storage solutions. Nevertheless, the intrinsic reversibility of the Zn anode becomes a focal concern due to the involvement of acidic electrolyte, which triggers Zn corrosion and facilitates the deposition of insulating byproducts. Moreover, the unregulated growth of Zn over cycling amplifies the risk of internal short-circuiting, primarily induced by the formation of Zn dendrites. In this study, a class of glucose-derived monomers and a block copolymer are synthesized through a building-block assembly strategy, ultimately leading to uncover the optimal polymer structure that suppresses the Zn corrosion while allowing efficient ion conduction with a substantial contribution from cation transport. Leveraging these advancements, remarkable enhancements are achieved in the realm of Zn reversibility, exemplified by a spectrum of performance metrics, including robust cycling stability without voltage overshoot and short-circuiting during 3000 h of cycling, stable operation at a high depth of charge/discharge of 75% and a high current density, >95% Coulombic efficiency over 2000 cycles, successful translation of the anode improvement to full cell performance. These polymer designs offer a transformative path based on the modular synthesis of polymeric coatings toward highly reversible Zn anode.
Collapse
Affiliation(s)
- Yaping Yan
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Ruhuai Mei
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Jiachen Ma
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Yang Huang
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, Guangdong, 511400, China
| | - Ying Zhu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Zhen Lang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Hongmei Tang
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Wenlan Zhang
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China
| | - Oliver G Schmidt
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| |
Collapse
|
2
|
Mirzababaei S, Towery LAK, Kozminsky M. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications. Front Bioeng Biotechnol 2024; 12:1347666. [PMID: 38605991 PMCID: PMC11008679 DOI: 10.3389/fbioe.2024.1347666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.
Collapse
Affiliation(s)
- Soheyl Mirzababaei
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Lily Alyssa Kera Towery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Molly Kozminsky
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Fedorov P, Soldatov I, Neu V, Schäfer R, Schmidt OG, Karnaushenko D. Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices. Nat Commun 2024; 15:2048. [PMID: 38448405 PMCID: PMC10918081 DOI: 10.1038/s41467-024-46185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.
Collapse
Affiliation(s)
- Pavel Fedorov
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany.
| | - Ivan Soldatov
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Volker Neu
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Rudolf Schäfer
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- Institute for Materials Science, TU Dresden, 01062, Dresden, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany.
- Nanophysics, Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
| |
Collapse
|
4
|
Song Y, Tian C, Lee Y, Yoon M, Yoon SE, Cho SY. Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine. ACS MEASUREMENT SCIENCE AU 2023; 3:393-403. [PMID: 38145025 PMCID: PMC10740128 DOI: 10.1021/acsmeasuresciau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023]
Abstract
With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.
Collapse
Affiliation(s)
- Youngho Song
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changyu Tian
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yullim Lee
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minyeong Yoon
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Eun Yoon
- Division
of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soo-Yeon Cho
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Vora K, Kordas N, Seidl K. Label-Free, Impedance-Based Biosensor for Kidney Disease Biomarker Uromodulin. SENSORS (BASEL, SWITZERLAND) 2023; 23:9696. [PMID: 38139542 PMCID: PMC10747639 DOI: 10.3390/s23249696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
We demonstrate the development of a label-free, impedance-based biosensor by using a passivation layer of 50-nm tantalum pentoxide (Ta2O5) on interdigitated electrodes (IDE). This layer was fabricated by atomic layer deposition (ALD) and has a high dielectric constant (high-κ), which improves the capacitive property of the IDE. We validate the biosensor's performance by measuring uromodulin, a urine biomarker for kidney tubular damage, from artificial urine samples. The passivation layer is functionalized with uromodulin antibodies for selective binding. The passivated IDE enables the non-faradaic impedance measurement of uromodulin concentrations with a measurement range from 0.5 ng/mL to 8 ng/mL and with a relative change in impedance of 15 % per ng/mL at a frequency of 150 Hz (log scale). This work presents a concept for point-of-care biosensing applications for disease biomarkers.
Collapse
Affiliation(s)
- Kunj Vora
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
| | - Norbert Kordas
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
| | - Karsten Seidl
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany; (N.K.); (K.S.)
- Department of Electronic Components and Circuits, University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| |
Collapse
|
6
|
Buttkewitz MA, Heuer C, Bahnemann J. Sensor integration into microfluidic systems: trends and challenges. Curr Opin Biotechnol 2023; 83:102978. [PMID: 37531802 DOI: 10.1016/j.copbio.2023.102978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The combination of sensors and microfluidics has become a promising approach for detecting a wide variety of targets relevant in biotechnology. Thanks to recent advances in the manufacturing of microfluidic systems, microfluidics can be manufactured faster, cheaper, and more accurately than ever before. These advances make microfluidic systems very appealing as a basis for constructing sensor systems, and microfluidic devices have been adapted to house (bio)sensors for various applications (e.g. protein biomarker detection, cell culture oxygen control, and pathogen detection). This review article highlights several successfully integrated microfluidic sensor systems, with a focus on work that has been published within the last two years. Different sensor integration methods are discussed, and the latest trends in wearable- and smartphone-based sensors are described.
Collapse
Affiliation(s)
- Marc A Buttkewitz
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
7
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
8
|
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron 2023; 234:115355. [PMID: 37159988 DOI: 10.1016/j.bios.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Biological barriers are multicellular structures that precisely regulate the transport of ions, biomolecules, drugs, cells, and other organisms. Transendothelial/epithelial electrical resistance (TEER) is a label-free method for predicting the properties of biological barriers. Understanding the mechanisms that control TEER significantly enhances our knowledge of the physiopathology of different diseases and aids in the development of new drugs. Measuring TEER values within microphysiological systems called organ-on-a-chip devices that simulate the microenvironment, architecture, and physiology of biological barriers in the body provides valuable insight into the behavior of barriers in response to different drugs and pathogens. These integrated systems should increase the accuracy, reproducibility, sensitivity, resolution, high throughput, speed, cost-effectiveness, and reliable predictability of TEER measurements. Implementing advanced micro and nanoscale manufacturing techniques, surface modification methods, biomaterials, biosensors, electronics, and stem cell biology is necessary for integrating TEER measuring systems with organ-on-chip technology. This review focuses on the applications, advantages, and future perspectives of integrating organ-on-a-chip technology with TEER measurement methods for studying biological barriers. After briefly reviewing the role of TEER in the physiology and pathology of barriers, standard techniques for measuring TEER, including Ohm's law and impedance spectroscopy, and commercially available devices are described. Furthermore, advances in TEER measurement are discussed in multiple barrier-on-a-chip system models representing different organs. Finally, we outline future trends in implementing advanced technologies to design and fabricate nanostructured electrodes, complicated microfluidic chips, and membranes for more advanced and accurate TEER measurements.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Milad Sabbagh
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
9
|
Jeong MH, Im H, Dahl JB. Non-contact microfluidic analysis of the stiffness of single large extracellular vesicles from IDH1-mutated glioblastoma cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201412. [PMID: 37649709 PMCID: PMC10465107 DOI: 10.1002/admt.202201412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 09/01/2023]
Abstract
In preparation for leveraging extracellular vesicles (EVs) for disease diagnostics and therapeutics, fundamental research is being done to understand EV biological, chemical, and physical properties. Most published studies have investigated nanoscale EVs and focused on EV biochemical content. There is much less understanding of large microscale EV characteristics and EV mechanical properties. We recently introduced a non-contact microfluidic technique that measures the stiffness of large EVs (>1 μm diameter). This pilot study probes the robustness of the microfluidic technique to distinguish between EV populations by comparing stiffness distributions of large EVs derived from glioblastoma cell lines. EVs derived from cells expressing the IDH1 mutation, a common glioblastoma mutation known to disrupt lipid metabolism, were stiffer than those expressed from wild-type cells in a statistical comparison of sample medians. A supporting lipidomics analysis showed that the IDH1 mutation increased the amount of saturated lipids in EVs. Taken together, these data encourage further investigation into the potential of high-throughput microfluidics to distinguish between large EV populations that differ in biomolecular composition. These findings contribute to the understanding of EV biomechanics, in particular for the less studied microscale EVs.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joanna B Dahl
- Engineering Department, University of Massachusetts Boston, Boston, MA 02025, USA
| |
Collapse
|
10
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Picogram level electrochemical impedimetric immunosensor for monitoring Mycobacterium tuberculosis based on specific and sensitive ESAT-6 monoclonal antibody. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Xue Z, Jin T, Xu S, Bai K, He Q, Zhang F, Cheng X, Ji Z, Pang W, Shen Z, Song H, Shuai Y, Zhang Y. Assembly of complex 3D structures and electronics on curved surfaces. SCIENCE ADVANCES 2022; 8:eabm6922. [PMID: 35947653 PMCID: PMC9365271 DOI: 10.1126/sciadv.abm6922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/27/2022] [Indexed: 05/25/2023]
Abstract
Electronic devices with engineered three-dimensional (3D) architectures are indispensable for frictional-force sensing, wide-field optical imaging, and flow velocity measurement. Recent advances in mechanically guided assembly established deterministic routes to 3D structures in high-performance materials, through controlled rolling/folding/buckling deformations. The resulting 3D structures are, however, mostly formed on planar substrates and cannot be transferred directly onto another curved substrate. Here, we introduce an ordered assembly strategy to allow transformation of 2D thin films into sophisticated 3D structures on diverse curved surfaces. The strategy leverages predefined mechanical loadings that deform curved elastomer substrates into flat/cylindrical configurations, followed by an additional uniaxial/biaxial prestretch to drive buckling-guided assembly. Release of predefined loadings results in an ordered assembly that can be accurately captured by mechanics modeling, as illustrated by dozens of complex 3D structures assembled on curved substrates. Demonstrated applications include tunable dipole antennas, flow sensors inside a tube, and integrated electronic systems capable of conformal integration with the heart.
Collapse
Affiliation(s)
- Zhaoguo Xue
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Shiwei Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ke Bai
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Qi He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ziyao Ji
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Wenbo Pang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yumeng Shuai
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Tang D, Jiang L, Tang W, Xiang N, Ni Z. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing. Talanta 2022; 242:123274. [DOI: 10.1016/j.talanta.2022.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
|
14
|
Özsoylu D, Wagner T, Schöning MJ. Electrochemical Cell-based Biosensors for Biomedical Applications. Curr Top Med Chem 2022; 22:713-733. [DOI: 10.2174/1568026622666220304213617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Electrochemical cell-based biosensors have been showing increasing interest within the last 15 years, with a large number of reports generally dealing with the sensors’ sensitivity, selectivity, stability, signal-to-noise ratio, spatiotemporal resolution, etc. However, only a few of them are now available as commercial products on the market. In this review, technological advances, current challenges and opportunities of electrochemical cell-based biosensors are presented. The article encompasses emerging studies, mainly focusing on the last five years (from 2016 to mid 2021), towards cell-based biological field-effect devices, cell-based impedimetric sensors and cell-based microelectrode arrays. In addition, special attention lies on recent progress in recording at the single-cellular level, including intracellular monitoring with high spatiotemporal resolution as well as integration into microfluidics for lab-on-a-chip applications. Moreover, a comprehensive discussion on challenges and future perspectives will address the future potential of electrochemical cell-based biosensors.
Collapse
Affiliation(s)
- Dua Özsoylu
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Jülich, Germany
- Institute of Biological Information Processing (IBI-3), Research Centre Jülich GmbH, Jülich, Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Jülich, Germany
- Institute of Biological Information Processing (IBI-3), Research Centre Jülich GmbH, Jülich, Germany
| |
Collapse
|
15
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
16
|
Fan W, Xiong Q, Ge Y, liu T, Zeng S, Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst 2022; 147:1722-1729. [DOI: 10.1039/d2an00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer diagnosis is made by microfluidic chip based-on impedance analysis.
Collapse
Affiliation(s)
- Weihua Fan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
| | - Qiao Xiong
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Ting liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| |
Collapse
|
17
|
Rivkin B, Becker C, Singh B, Aziz A, Akbar F, Egunov A, Karnaushenko DD, Naumann R, Schäfer R, Medina-Sánchez M, Karnaushenko D, Schmidt OG. Electronically integrated microcatheters based on self-assembling polymer films. SCIENCE ADVANCES 2021; 7:eabl5408. [PMID: 34919439 PMCID: PMC8682992 DOI: 10.1126/sciadv.abl5408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/02/2021] [Indexed: 05/22/2023]
Abstract
Existing electronically integrated catheters rely on the manual assembly of separate components to integrate sensing and actuation capabilities. This strongly impedes their miniaturization and further integration. Here, we report an electronically integrated self-assembled microcatheter. Electronic components for sensing and actuation are embedded into the catheter wall through the self-assembly of photolithographically processed polymer thin films. With a diameter of only about 0.1 mm, the catheter integrates actuated digits for manipulation and a magnetic sensor for navigation and is capable of targeted delivery of liquids. Fundamental functionalities are demonstrated and evaluated with artificial model environments and ex vivo tissue. Using the integrated magnetic sensor, we develop a strategy for the magnetic tracking of medical tools that facilitates basic navigation with a high resolution below 0.1 mm. These highly flexible and microsized integrated catheters might expand the boundary of minimally invasive surgery and lead to new biomedical applications.
Collapse
Affiliation(s)
- Boris Rivkin
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Christian Becker
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Balram Singh
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Azaam Aziz
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Farzin Akbar
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Aleksandr Egunov
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Dmitriy D. Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Rudolf Schäfer
- Institute for Metallic Materials, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
- Corresponding author. (M.M.-S.); (D.K.); (O.G.S.)
| | - Daniil Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
- Corresponding author. (M.M.-S.); (D.K.); (O.G.S.)
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, 09126 Chemnitz, Germany
- Nanophysics, Faculty of Physics, TU Dresden, 01062 Dresden, Germany
- Corresponding author. (M.M.-S.); (D.K.); (O.G.S.)
| |
Collapse
|
18
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Akbar F, Rivkin B, Aziz A, Becker C, Karnaushenko DD, Medina-Sánchez M, Karnaushenko D, Schmidt OG. Self-sufficient self-oscillating microsystem driven by low power at low Reynolds numbers. SCIENCE ADVANCES 2021; 7:eabj0767. [PMID: 34705511 PMCID: PMC8550224 DOI: 10.1126/sciadv.abj0767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 06/02/2023]
Abstract
Oscillations at several hertz are a key feature of dynamic behavior of various biological entities, such as the pulsating heart, firing neurons, or the sperm-beating flagellum. Inspired by nature’s fundamental self-oscillations, we use electroactive polymer microactuators and three-dimensional microswitches to create a synthetic electromechanical parametric relaxation oscillator (EMPRO) that relies on the shape change of micropatterned polypyrrole and generates a rhythmic motion at biologically relevant stroke frequencies of up to ~95 Hz. We incorporate an Ag-Mg electrochemical battery into the EMPRO for autonomous operation in a nontoxic environment. Such a self-sufficient self-oscillating microsystem offers new opportunities for artificial life at low Reynolds numbers by, for instance, mimicking and replacing nature’s propulsion and pumping units.
Collapse
Affiliation(s)
- Farzin Akbar
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Boris Rivkin
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Azaam Aziz
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Christian Becker
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Dmitriy D. Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Daniil Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden, Leibniz IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
- Nanophysics, Faculty of Physics, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Song P, Fu H, Wang Y, Chen C, Ou P, Rashid RT, Duan S, Song J, Mi Z, Liu X. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosens Bioelectron 2021; 190:113264. [PMID: 34225055 DOI: 10.1016/j.bios.2021.113264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Field-effect-transistor (FET) biosensors capable of rapidly detecting disease-relevant biomarkers have long been considered as a promising tool for point-of-care (POC) diagnosis. Rolled-up nanotechnology, as a batch fabrication strategy for generating three-dimensional (3D) microtubes, has been demonstrated to possess unique advantages for constructing FET biosensors. In this paper, we report a new approach combining the two fascinating technologies, the FET biosensor and the rolled-up microtube, to develop a microfluidic diagnostic biosensor. We integrated an excellent biosensing III-nitride material-indium nitride (InN)-into a rolled-up microtube and used it as the FET channel. The InN possesses strong, intrinsic, and stable electron accumulation (~1013 cm-2) on its surface, thereby providing a high device sensitivity. Multiple rolled-up InN microtube FET biosensors fabricated on the same substrate were integrated with a microfluidic channel for convenient fluids handling, and shared the same external electrode (inserted into the microchannel outlet) for gating voltage modulation. Using human immunodeficiency virus (HIV) antibody as a model disease marker, we characterized the analytical performance of the developed biosensor and achieved a limit of detection (LOD) of 2.5 pM for serum samples spiked with HIV gp41 antibodies. The rolled-up InN microtube FET biosensor represents a new type of III-nitride-based FET biosensor and holds significant potential for practical POC diagnosis.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology-Shenzhen, 1 Pingshan Road, Shenzhen, 518000, China
| | - Cheng Chen
- School of Aeronautics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, 710000, China
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, H3A 0C5, Canada
| | - Roksana Tonny Rashid
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, H3A 0C5, Canada
| | - Zetian Mi
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A 0E9, Canada; Department Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
| |
Collapse
|