1
|
Wu D, Xu G, Tan J, Wang X, Zhang Y, Ma L, Chen W, Wang K. Nanophotonic structures energized short-wave infrared quantum dot photodetectors and their advancements in imaging and large-scale fabrication techniques. NANOSCALE 2024. [PMID: 39693080 DOI: 10.1039/d4nr03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Short-wave infrared (SWIR) photodetectors (PDs) have a wide range of applications in the field of information and communication. Especially in recent years, with the increasing demand for consumer electronics, conventional semiconductor-based PDs alone are unable to cope with the ever-increasing market. Colloidal quantum dots (QDs) have attracted great interest due to their low fabrication cost, solution processability, and promising optoelectronic properties. In addition to advancements in synthesis methods and surface ligand engineering, the photoelectronic performance of QD-based SWIR PDs has been greatly improved due to developments in nanophotonic structural engineering, such as microcavities, localized and propagating surface plasmon resonant structures, and gratings for specific and high-performance detection application. The improvement in the performance of photoconductors, photodiodes, and phototransistors also enhances the performance of SWIR imaging sensors where they have been realized and demonstrated promising potential due to the direct integration of QD PDs with CMOS substrates. In addition, flexible manipulation of the QDs has been realized, thanks to their solution-processable capability. Therefore, a variety of large-scale production process methods have been examined including blade coating, flexible microcomb printing, ink-jet printing, spray deposition, etc. which can effectively reduce the cost and promote commercial application in consumer electronics. Finally, the current challenges and future development prospects of QD-based PDs are reviewed and could provide guidance for future design of the QDs PDs.
Collapse
Affiliation(s)
- Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Genghao Xu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Jing Tan
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xiao Wang
- College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Yilan Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Lei Ma
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Wei Chen
- College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Kai Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Ahn Y, Eom SY, Kim G, Lee JH, Kim B, Kim D, Si M, Yang M, Jung Y, Kim BS, Chung YJ, Jeong KS, Baek S. Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407453. [PMID: 39373718 PMCID: PMC11600258 DOI: 10.1002/advs.202407453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Extended shortwave infrared (eSWIR) photodetectors that employ solution-processable semiconductors have attracted attention for use in applications such as ranging, night vision, and gas detection. Colloidal quantum dots (CQDs) are promising materials with facile bandgap tunability across the visible-to-mid-infrared wavelengths. However, toxic elements, such as Hg and Pb, and the slow response time of CQD-based IR photodetectors, limit their commercial viability. This article presents a novel eSWIR photodetector that is fabricated using silver telluride (Ag2Te) CQDs. Effective thiolate ligand exchange enables a lower trap density and improved carrier mobility in CQD solids. Furthermore, a vertical p-n photodiode architecture with a favorable energy-level landscape is utilized to facilitate charge extraction, resulting in a fast, room-temperature-operable, and toxic-element-free CQD photodetector. The best eSWIR Ag2Te CQD photodetector exhibits a fall time of 72 ns, representing the fastest response time among all prior CQD-based eSWIR photodetectors, including those containing toxic elements, such as Pb and Hg.
Collapse
Affiliation(s)
- Yongnam Ahn
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - So Young Eom
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Gahyeon Kim
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Jin Hyeok Lee
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Beomkwan Kim
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dongeon Kim
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Min‐Jae Si
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Minjung Yang
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yujin Jung
- School of Chemical EngineeringYeungnam University280 Daehak‐roGyeongsanGyeongbuk38541Republic of Korea
| | - Bo Seon Kim
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yoon Jang Chung
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Kwang Seob Jeong
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| | - Se‐Woong Baek
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
3
|
Ma T, Xue N, Muhammad A, Fang G, Yan J, Chen R, Sun J, Sun X. Recent Progress in Photodetectors: From Materials to Structures and Applications. MICROMACHINES 2024; 15:1249. [PMID: 39459123 PMCID: PMC11509732 DOI: 10.3390/mi15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.
Collapse
Affiliation(s)
- Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Ning Xue
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Abdul Muhammad
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Gang Fang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jinyao Yan
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Rongkun Chen
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuguang Sun
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| |
Collapse
|
4
|
Wang B, Hu H, Yuan M, Yang J, Liu J, Gao L, Zhang J, Tang J, Lan X. Short-Wave Infrared Detection and Imaging Employing Size-Customized HgTe Nanocrystals. SMALL METHODS 2024; 8:e2301557. [PMID: 38381091 DOI: 10.1002/smtd.202301557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Indexed: 02/22/2024]
Abstract
HgTe nanocrystals (NCs) possess advantages including tunable infrared absorption spectra, solution processability, and low fabrication costs, offering new avenues for the advancement of next-generation infrared detectors. In spite of great synthetic advances, it remains essential to achieve customized synthesis of HgTe NCs in terms of industrial applications. Herein, by taking advantage of a high critical nucleation concentration of HgTe NCs, a continuous-dropwise (CD) synthetic approach that features the addition of the anion precursors in a feasible drop-by-drop fashion is demonstrated. The slow reaction dynamics enable size-customized synthesis of HgTe NCs with sharp band tails and wide absorption range fully covering the short- and mid-infrared regions. More importantly, the intrinsic advantages of CD process ensure high-uniformity and scale-up synthesis from batch to batch without compromising the excitonic features. The resultant HgTe nanocrystal photodetectors show a high room-temperature detectivity of 8.1 × 1011 Jones at 1.7 µm cutoff absorption edge. This CD approach verifies a robust method for controlled synthesis of HgTe NCs and might have important implications for scale-up synthesis of other nanocrystal materials.
Collapse
Affiliation(s)
- Binbin Wang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Huicheng Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Mohan Yuan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Liang Gao
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianbing Zhang
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xinzheng Lan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
5
|
Küstner F, Ditlbacher H, Hohenau A, Dirin DN, Kovalenko M, Krenn JR. Quantitative photocurrent scanning probe microscopy on PbS quantum dot monolayers. NANOSCALE 2024; 16:16664-16670. [PMID: 39171646 DOI: 10.1039/d4nr02575j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photoconductive atomic force microscopy can probe monolayers of PbS/perovskite quantum dots (QDs) with a contact area of 1-3 QDs in stable and reproducible acquisition conditions for I/V curves and photocurrent maps. From the measurements, quantitative values for the barrier height, built-in voltage, diffusion constant and ideality factor are deduced with high precision. The data analysis is based on modelling a superposition of the drift current of the photo-excited charges and a diffusion current across the interface barriers, providing physical insight into the underlying processes. Besides looking into PbS/perovskite on an indium tin oxide substrate, it is shown how the photocurrent is modified by changing either the QD ligand (to thiocyanate) or the substrate (to micro- and nanostructured gold). The dependence of the photocurrent on the light irradiance is found to follow a power law with an exponent of 0.64. Generally, quantitative measurements with high spatial resolution (on the single QD level) can provide significant insight into the processes in nanostructured hybrid optoelectronic components.
Collapse
Affiliation(s)
- Florian Küstner
- Institute of Physics, University of Graz, 8010 Graz, Austria
| | | | - Andreas Hohenau
- Institute of Physics, University of Graz, 8010 Graz, Austria
| | - Dmitry N Dirin
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, 8600 Dübendorf, Switzerland
| | - Maksym Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, 8600 Dübendorf, Switzerland
| | - Joachim R Krenn
- Institute of Physics, University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Yang X, Li Y, Liu J, Li F, Chang R, Yin Q, Xu Q, Wu Z, Shen H. High-Performance Up-Conversion Photodetectors with Zero-Barrier Interconnection via Self-Assembled Surface Dipoles. NANO LETTERS 2024. [PMID: 39037851 DOI: 10.1021/acs.nanolett.4c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The performance of lead sulfide (PbS) quantum-dot-based up-conversion photodetectors is greatly limited owing to a large potential barrier at the interconnection layer between the photodetecting (PD) unit and light-emitting (LED) unit. Thus, very high driving voltage is required, rendering high energy consumption and poor working stability. By introducing azetidinium iodide (AzI) at the PD/LED interface, zero-barrier interconnection was achieved for the PbS-based infrared up-conversion photodetectors. The turn-on voltage under infrared illumination was greatly reduced to 1.2 V and a high photon-to-photon conversion efficiency (ηpp) of ∼3% was obtained at 3 V, showing a 10-fold enhancement compared to those previously reported devices. The mechanism for the regulation of interface energy level alignments was related to the self-assembly of the AzI dipole molecules, resulting from the van der Waals force between the S atoms in the ligands of PbS and the protonated H atoms around N atoms in AzI.
Collapse
Affiliation(s)
- Xinxin Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Yaobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - JiaoJiao Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Fei Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Ruiguang Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Qiuyang Yin
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Qiulei Xu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Zhenghui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Kwon MG, Kim C, Kim SM, Yoo TJ, Lee Y, Hwang HJ, Lee S, Lee BH. Demonstration of a low power and high-speed graphene/silicon heterojunction near-infrared photodetector. NANOSCALE ADVANCES 2024; 6:3391-3398. [PMID: 38933854 PMCID: PMC11197439 DOI: 10.1039/d4na00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
The structure and process of the graphene/Si heterojunction near-infrared photodetector were optimized to enhance the operating speed limit. The introduction of a well-designed structure improved the rise time from 12.6 μs to 115 ns, albeit at the expense of the responsivity, which decreased from 1.25 A W-1 to 0.56 A W-1. Similarly, the falling time was improved from 38 μs to 288 ns with a sacrifice in responsivity from 1.25 A W-1 to 0.29 A W-1, achieved through the introduction of Ge-induced defect-recombination centers within the well. Through a judicious well design and the introduction of recombination defect centers, the minimum pulse width could be improved from 50.6 μs to 435 ns, facilitating 2 MHz operation. This represents more than 100 times increase compared to previously reported graphene and graphene/Si hybrid photodetectors.
Collapse
Affiliation(s)
- Min Gyu Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) 123, Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Cihyun Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Seung-Mo Kim
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Tae Jin Yoo
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Yongsu Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| | - Hyeon Jun Hwang
- Department of Semiconductor Engineering, Mokpo National University 1666, Yeongsan-ro, Cheonggye-myeon Muan-gun Jeollanam-do 58554 Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST) 123, Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Byoung Hun Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH) 77, Cheongam-ro, Nam-gu Pohang-si Gyeongsangbuk-do 37673 Republic of Korea
| |
Collapse
|
8
|
Wan Y, Wang Y, Yuan S, Wan Z, Lu Y, Wang L, Wang Q. Dimension-Confined Growth of a Crack-Free PbS Microplate Array for Infrared Image Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26386-26394. [PMID: 38722643 DOI: 10.1021/acsami.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Epitaxy of semiconductors is a necessary step toward the development of electronic devices such as lasers, detectors, transistors, and solar cells. However, the lattice ordering of semiconductor functional films is inevitably disrupted by excessive concentrated stress due to the mismatch of the thermal expansion coefficient. Herein, combined with the first-principles calculation, we find that a rigid film/substrate bilayer heterostructure with a large thermal expansion mismatch upon cooling to room temperature from growth is free of surface cracks when the rigid film exhibits a dimension smaller than the critical condition for the breaking energy. The principle has been verified in a PbS/SrTiO3 bilayer system that is crack free on PbS single-crystalline microplate arrays through the designing of a dimension-confined growth (DCG) method. Interestingly, this crack-free, large-scale PbS microplate array exhibits exceptional uniformity in morphology, dimensions, thickness, and photodetection properties, enabling a broad-band infrared image sensing. This work provides a new perspective to design materials and arrays that demand smooth and continuous surfaces, which are not limited only to semiconductor electronics but also include mechanical structures, optical materials, biomedical materials, and others.
Collapse
Affiliation(s)
- Yu Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Shengpeng Yuan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Zhiyang Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Lu
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Li Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Qisheng Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Meng L, Xu Q, Zhang J, Wang X. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun (Camb) 2024; 60:1072-1088. [PMID: 38174780 DOI: 10.1039/d3cc04315k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Colloidal quantum dots (CQDs) are a promising class of materials for next-generation optoelectronic devices, such as displays, LEDs, lasers, photodetectors, and solar cells. CQDs can be obtained at low cost and in large quantities using wet chemistry. CQDs have also been produced using various materials, such as CdSe, InP, perovskites, PbS, PbSe, and InAs. Some of these CQD materials absorb and emit photons in the visible region, making them excellent candidates for displays and LEDs, while others interact with low-energy photons in the near-infrared (NIR) region and are intensively utilized in NIR lasers, NIR photodetectors, and solar cells. In this review, we have focused on NIR CQD materials and reviewed the development of CQD materials for solar cells, NIR lasers, and NIR photodetectors since the first set of reports on CQD materials in these particular applications.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Applied Physics, Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, Finland
| | - Qiwei Xu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Jiangwen Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
10
|
Wang Y, Hu H, Yuan M, Xia H, Zhang X, Liu J, Yang J, Xu S, Shi Z, He J, Zhang J, Gao L, Tang J, Lan X. Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58573-58582. [PMID: 38059485 DOI: 10.1021/acsami.3c12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Lead sulfide (PbS) colloidal quantum dots (CQDs) for photodetectors (PDs) have garnered great attention due to their potential use as low-cost, high-performance, and large-area infrared focal plane arrays. The prevailing device architecture employed for PbS CQD PDs is the p-i-n structure, where PbS CQD films treated with thiol molecules, such as 1,2-ethanedithiol (EDT), are widely used as p-type layers due to their favorable band alignment. However, PbS-EDT films face a critical challenge associated with low film quality, resulting in many defects that curtail the device performance. Herein, a controlled oxidization process is developed for better surface passivation of the PbS-EDT transport layer. The dark current density (Jd) of PbS CQD PDs based on optimized PbS-EDT layer shows a dramatic decrease by nearly 2 orders of magnitude. The increase of carrier lifetime and suppression of carrier recombination via controlled oxidation in PbS-EDT CQDs were confirmed by transient absorption spectra and electrochemical impedance spectra. The device based on the optimized PbS-EDT hole transport layer (HTL) exhibits a specific detectivity (D*) that is 3.4 times higher compared to the control device. Finally, the CQD PD employing oxidization PbS-EDT CQDs is integrated with a thin film transistor (TFT) readout circuit, which successfully accomplishes material discrimination imaging, material occlusion imaging, and smoke penetration imaging. The controlled oxidization strategy verifies the significance of surface management of CQD solids and is expected to help advance infrared optoelectronic applications based on CQDs.
Collapse
Affiliation(s)
- Ya Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Huicheng Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Mohan Yuan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Hang Xia
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xingchen Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jing Liu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Shaoqiu Xu
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhaorong Shi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jungang He
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Jianbing Zhang
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Liang Gao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiang Tang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xinzheng Lan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Optics Valley Laboratory, Wuhan, Hubei 430074, People's Republic of China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
11
|
Wang S, Huang W, Tian J, Peng J, Cao J. A near-infrared photodetector based on carbon nanotube transistors exhibits ultra-low dark current through field-modulated charge carrier transport. Phys Chem Chem Phys 2023; 25:26991-26998. [PMID: 37667819 DOI: 10.1039/d3cp01497e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Near-infrared photodetectors (NIR PDs) are devices that convert infrared light signals, which are widely used in military and civilian applications, into electrical signals. However, a common problem associated with PDs is a high dark current. Interestingly, gate voltage can regulate carrier migration in the channels. In this study, a PbS quantum dot heterojunction combined with a carbon nanotube (CNT) field effect transistor (FET) is designed and described. Significantly, this NIR PD achieves field-modulated carrier transport in a CNT transistor, in which the dark current is effectively regulated by the gate voltage. In this PD, an ultra-low dark current of 8 pA is obtained by gate voltage regulation. Moreover, the device shows a fast response speed of 6.5 ms and a high normalized detectivity of 4.75 × 1011 Jones at 0.085 W cm-2 power density and -0.2 V bias voltage. Overall, this work details a novel strategy for the fabrication of a PD with an ultra-low dark current based on a FET.
Collapse
Affiliation(s)
- Sheng Wang
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan 411105, China
| | - Wuhua Huang
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China.
- Guangxi Zhuang Autonomous Region Institute of Metrology & Test, 530200, China
| | - Junlong Tian
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China.
- Department of Electronic Science, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Jie Peng
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Juexian Cao
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan 411105, China
| |
Collapse
|
12
|
Zhou W, Xu R, Wu H, Jiang X, Wang H, García de Arquer FP, Ning Z. Quantum-Tuned Cascade Multijunction Infrared Photodetector. ACS NANO 2023; 17:18864-18872. [PMID: 37733581 DOI: 10.1021/acsnano.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Emerging applications such as augmented reality, self-driving vehicles, and quantum information technology require optoelectronic devices capable of sensing a low number of photons with high sensitivity (including gain) and high speed and that could operate in the infrared at telecom windows beyond silicon's bandgap. State-of-the-art semiconductors achieve some of these functions through costly and not easily scalable doping and epitaxial growing methods. Colloidal quantum dots (QDs), on the other hand, could be easily tuned and are compatible with consumer electronics manufacturing. However, the development of a QD infrared photodetector with high gain and high response speed remains a challenge. Herein, we present a QD monolithic multijunction cascade photodetector that advances in the speed-sensitivity-gain space through precise control over doping and bandgap. We achieved this by implementing a QD stack in which each layer is tailored via bandgap tuning and electrostatic surface manipulation. The resulting junctions sustain enhanced local electric fields, which, upon illumination, facilitate charge tunneling, recirculation, and gain, but retain low dark currents in the absence of light. Using this platform, we demonstrate an infrared photodetector sensitive up to 1500 nm, with a specific detectivity of ∼3.7 × 1012 Jones, a 3 dB bandwidth of 300 kHz (0.05 cm2 device), and a gain of ∼70× at 1300 nm, leading to an overall gain-bandwidth product over 20 MHz, in comparison with 3 kHz of standard photodiode devices of similar areas.
Collapse
Affiliation(s)
- Wenjia Zhou
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Rui Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Haobo Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Xianyuan Jiang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
13
|
Dalui A, Ariga K, Acharya S. Colloidal semiconductor nanocrystals: from bottom-up nanoarchitectonics to energy harvesting applications. Chem Commun (Camb) 2023; 59:10835-10865. [PMID: 37608724 DOI: 10.1039/d3cc02605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared via the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.
Collapse
Affiliation(s)
- Amit Dalui
- Department of Chemistry, Jogamaya Devi College, Kolkata-700026, India
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba 277-8561, Japan
- International Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
14
|
Xu Q, Yang X, Liu JJ, Li F, Chang R, Wang L, Wang AQ, Wu Z, Shen H, Du Z. Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors. NANOSCALE 2023; 15:8197-8203. [PMID: 37097127 DOI: 10.1039/d3nr01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The quantum dot up-conversion device combines an infrared photodetector (PD) and a visible quantum-dot light-emitting diode (QLED) to directly convert infrared targets to visible images. However, large efficiency loss is usually induced by the integration of the detecting unit and the emitting unit. One of the important reasons is the performances of the PD and QLED units restraining each other. We regulated the equilibrium between infrared absorption and visible emission by changing the thicknesses of infrared active layers in up-conversion devices. A good balance could be achieved between the absorption of 980 nm incident light and the out-coupling of the 634 nm emission when the active layer thickness is 140 nm, leading to the best performance of the up-conversion device. As more photogenerated carriers are produced with the increase of infrared illumination intensity, the external quantum efficiency (EQE) of the QLED unit in the up-conversion device remains little changed. This suggests the limited amount of photogenerated holes in the PD unit does not limit the EQE of the QLED unit. However, a PD unit with a high ratio of photogenerated holes trapped near the interconnection decreased the EQE in the QLED unit. This work provides new insights into the interplay between the PD and QLED units in up-conversion devices, which is crucial for their further improvements.
Collapse
Affiliation(s)
- Qiulei Xu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Xinxin Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Jiao Jiao Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Fei Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Ruiguang Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - A Qiang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhenghui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
15
|
Yu L, Tian P, Tang L, Zuo W, Zhong H, Hao Q, Teng KS, Zhao G, Su R, Gong X, Yuan J. Room Temperature Broadband Bi 2Te 3/PbS Colloidal Quantum Dots Infrared Photodetectors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094328. [PMID: 37177533 PMCID: PMC10181788 DOI: 10.3390/s23094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Lead sulfide colloidal quantum dots (PbS CQDs) are promising optoelectronic materials due to their unique properties, such as tunable band gap and strong absorption, which are of immense interest for application in photodetectors and solar cells. However, the tunable band gap of PbS CQDs would only cover visible short-wave infrared; the ability to detect longer wavelengths, such as mid- and long-wave infrared, is limited because they are restricted by the band gap of the bulk material. In this paper, a novel photodetector based on the synergistic effect of PbS CQDs and bismuth telluride (Bi2Te3) was developed for the detection of a mid-wave infrared band at room temperature. The device demonstrated good performance in the visible-near infrared band (i.e., between 660 and 850 nm) with detectivity of 1.6 × 1010 Jones at room temperature. It also exhibited photoelectric response in the mid-wave infrared band (i.e., between 4.6 and 5.1 μm). The facile fabrication process and excellent performance (with a response of up to 5.1 μm) of the hybrid Bi2Te3/PbS CQDS photodetector are highly attractive for many important applications that require high sensitivity and broadband light detection.
Collapse
Affiliation(s)
- Lijing Yu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Pin Tian
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Libin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Wenbin Zuo
- Kunming Institute of Physics, Kunming 650223, China
| | - Hefu Zhong
- School of Materials and Energy, Yunnan University, Kunming 650500, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Kar Seng Teng
- Department of Electronic and Electrical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| | - Guiqin Zhao
- Kunming Institute of Physics, Kunming 650223, China
| | - Runhong Su
- Kunming Institute of Physics, Kunming 650223, China
| | - Xiaoxia Gong
- Kunming Institute of Physics, Kunming 650223, China
| | - Jun Yuan
- Kunming Institute of Physics, Kunming 650223, China
| |
Collapse
|
16
|
Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. NANOSCALE 2023; 15:6476-6504. [PMID: 36960839 DOI: 10.1039/d2nr07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| | - Rong Zhang
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
17
|
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, Xiao Y, Wang Z, He T. Infrared Photodetection from 2D/3D van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1169. [PMID: 37049263 PMCID: PMC10096675 DOI: 10.3390/nano13071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Collapse
Affiliation(s)
- Qianying Tang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jialu Weng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Lu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunlong Xiao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
18
|
Liu J, Wang J, Xian K, Zhao W, Zhou Z, Li S, Ye L. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection. Chem Commun (Camb) 2023; 59:260-269. [PMID: 36510729 DOI: 10.1039/d2cc05281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photodetectors hold great application potential in many fields such as image sensing, night vision, infrared communication and health monitoring. To date, commercial photodetectors mainly rely on inorganic semiconductors, e.g., monocrystalline silicon, germanium, and indium selenide/gallium with complex and costly fabrication, which are hardly compatible with wearable electronics. In contrast, organic conjugated materials provide great superiority in flexibility and stretchability. In this Highlight, the unique properties of organic and quantum dot photodetectors were firstly discussed to reveal the great complementarity of the two technologies. Subsequently, the recent advance of organic/quantum dot hybrid photodetectors was outlined to highlight their great potential in developing broadband and high-performance photodetectors. Moreover, the multiple functions (e.g., dual-band detection and upconversion detection) of hybrid photodetectors were highlighted for their promising application in image sensing and infrared detection. Lastly, we present a forword-looking discussion on the challenges and our insights for the further advancement of hybrid photodetectors. This work may spark enormous research attention in organic/quantum dot electronics and advance the commercial applications.
Collapse
Affiliation(s)
- Junwei Liu
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Jingjing Wang
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Kaihu Xian
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihua Zhou
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Shaojuan Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Long Ye
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
19
|
Perveen A, Movsesyan A, Abubakar SM, Saeed F, Hussain S, Raza A, Xu Y, Subramanian A, Khan Q, Lei W. In-situ Fabricated and Plasmonic Enhanced MACsPbBr3-Polymer Composite Perovskite Film Based UV Photodetector. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Yu SH, Hassan SZ, So C, Kang M, Chung DS. Molecular-Switch-Embedded Solution-Processed Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203401. [PMID: 35929102 DOI: 10.1002/adma.202203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent improvements in the performance of solution-processed semiconductor materials and optoelectronic devices have shifted research interest to the diversification/advancement of their functionality. Embedding a molecular switch capable of transition between two or more metastable isomers by light stimuli is one of the most straightforward and widely accepted methods to potentially realize the multifunctionality of optoelectronic devices. A molecular switch embedded in a semiconductor can effectively control various parameters such as trap-level, dielectric constant, electrical resistance, charge mobility, and charge polarity, which can be utilized in photoprogrammable devices including transistors, memory, and diodes. This review classifies the mechanism of each optoelectronic transition driven by molecular switches regardless of the type of semiconductor material or molecular switch or device. In addition, the basic characteristics of molecular switches and the persisting technical/scientific issues corresponding to each mechanism are discussed to help researchers. Finally, interesting yet infrequently reported applications of molecular switches and their mechanisms are also described.
Collapse
Affiliation(s)
- Seong Hoon Yu
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Yang M, Liu H, Wen S, Du Y, Gao F. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9058. [PMID: 36556869 PMCID: PMC9782523 DOI: 10.3390/ma15249058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Lead sulfide (PbS) quantum dots (QDs) have attracted a great deal of attention in recent decades, due to their value for applications in optoelectronic devices. However, optimizing the performance of optoelectronic devices through ligand engineering has become a major challenge, as the surfactants that surround quantum dots impede the transport of electrons. In this paper, we prepared PbS QD films and photoconductive devices with four different ligands: 1,2-ethylenedithiol (EDT), tetrabutylammonium iodide (TBAI), hexadecyl trimethyl ammonium bromide (CTAB), and sodium sulfide (Na2S). A series of characterization studies confirmed that using the appropriate ligands in the solid-state ligand exchange step for thin film fabrication can significantly improve the responsivity. The devices treated with sodium sulfide showed the best sensitivity and a wider detection from 400 nm to 2300 nm, compared to the other ligand-treated devices. The responsivity of the champion device reached 95.6 mA/W under laser illumination at 980 nm, with an intensity of 50 mW/cm2.
Collapse
|
22
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Zhang S, Bi C, Tan Y, Luo Y, Liu Y, Cao J, Chen M, Hao Q, Tang X. Direct Optical Lithography Enabled Multispectral Colloidal Quantum-Dot Imagers from Ultraviolet to Short-Wave Infrared. ACS NANO 2022; 16:18822-18829. [PMID: 36346695 PMCID: PMC9706660 DOI: 10.1021/acsnano.2c07586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/04/2022] [Indexed: 06/13/2023]
Abstract
Complementary metal oxide semiconductor (CMOS) silicon sensors play a central role in optoelectronics with widespread applications from small cell phone cameras to large-format imagers for remote sensing. Despite numerous advantages, their sensing ranges are limited within the visible (0.4-0.7 μm) and near-infrared (0.8-1.1 μm) range , defined by their energy gaps (1.1 eV). However, below or above that spectral range, ultraviolet (UV) and short-wave infrared (SWIR) have been demonstrated in numerous applications such as fingerprint identification, night vision, and composition analysis. In this work, we demonstrate the implementation of multispectral broad-band CMOS-compatible imagers with UV-enhanced visible pixels and SWIR pixels by layer-by-layer direct optical lithography of colloidal quantum dots (CQDs). High-resolution single-color images and merged multispectral images were obtained by using one imager. The photoresponse nonuniformity (PRNU) is below 5% with a 0% dead pixel rate and room-temperature responsivities of 0.25 A/W at 300 nm, 0.4 A/W at 750 nm, and 0.25 A/W at 2.0 μm.
Collapse
Affiliation(s)
- Shuo Zhang
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
| | - Cheng Bi
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
- Zhongxinrecheng
Science and Technology Co., Ltd., Beijing101102, People’s
Republic of China
| | - Yimei Tan
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
| | - Yuning Luo
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
| | - Yanfei Liu
- Zhongxinrecheng
Science and Technology Co., Ltd., Beijing101102, People’s
Republic of China
| | - Jie Cao
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
- Beijing
Key Laboratory for Precision Optoelectronic Measurement Instrument
and Technology, Beijing100081, People’s Republic of China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314019, People’s Republic of China
| | - Menglu Chen
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
- Beijing
Key Laboratory for Precision Optoelectronic Measurement Instrument
and Technology, Beijing100081, People’s Republic of China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314019, People’s Republic of China
| | - Qun Hao
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
- Beijing
Key Laboratory for Precision Optoelectronic Measurement Instrument
and Technology, Beijing100081, People’s Republic of China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314019, People’s Republic of China
| | - Xin Tang
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing100081, People’s Republic
of China
- Beijing
Key Laboratory for Precision Optoelectronic Measurement Instrument
and Technology, Beijing100081, People’s Republic of China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314019, People’s Republic of China
| |
Collapse
|
24
|
Zeng S, Tan W, Si J, Mao L, Shi J, Li Y, Hou X. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. J Phys Chem Lett 2022; 13:9096-9102. [PMID: 36154010 DOI: 10.1021/acs.jpclett.2c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
InP/ZnS core/shell quantum dots have shown extraordinary application potential in photocatalysis. In this work, we demonstrated by ultrafast spectroscopy that the electron transfer ability of InP/ZnSe/ZnS core/shell/shell quantum dots was better than that of InP/ZnS quantum dots, because the introduction of ZnSe midshell resulted in improved passivation and greater exciton delocalization. The temperature-dependent PL spectra indicate that the exciton-phonon coupling strength and exciton binding energy of InP/ZnSe/ZnS quantum dots are smaller than those of InP/ZnS quantum dots. Further photocatalytic hydrogen evolution testing revealed that the photocatalytic activity of InP/ZnSe/ZnS quantum dots was significantly higher than that of InP/ZnS quantum dots, and InP/ZnSe/ZnS quantum dots even demonstrated improved stability. This research deepened our understanding of carrier dynamics and charge separation of InP/ZnSe/ZnS quantum dots, especially highlighting the application potential of InP/ZnSe/ZnS quantum dots in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shijia Zeng
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Liuhao Mao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Jinwen Shi
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Yuren Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| |
Collapse
|
25
|
Gong W, Wang P, Li J, Li J, Zhang Y. Elucidating the Gain Mechanism in PbS Colloidal Quantum Dot Visible-Near-Infrared Photodiodes. J Phys Chem Lett 2022; 13:8327-8335. [PMID: 36040422 DOI: 10.1021/acs.jpclett.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The responsivities of colloidal quantum dot (CQD) photodiodes are not satisfactory (∼0.3 A W-1) due to the lack of gain. Here, visible-near-infrared PbS CQD photodiodes with a peak responsivity of ∼1 A W-1 and external quantum efficiencies larger than 100% are demonstrated. The gain is realized by electron tunneling injection through the Schottky junction (PbS-EDT/Au) with barrier height reduced to 0.27 eV, originating from the capture of photogenerated holes at the negatively charged acceptor traps generated in the oxidized hole-transport layer PbS-EDT. The resulting device exhibits a peak detectivity of ∼8 × 1011 jones at -1 V. Additionally, the response speed (400 μs) is not sacrificed by the trap states because of the dominated faster electron drift motion in the fully depleted device. Our results provide an accurate elucidation of the gain mechanism in CQD photodiodes and promise them great potential in weak light detection.
Collapse
Affiliation(s)
- Wei Gong
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Peng Wang
- Faculty of Information Technology, Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Jingjie Li
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Jingzhen Li
- Faculty of Information Technology, Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yongzhe Zhang
- Faculty of Information Technology, Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Liu X, Fu T, Liu J, Wang Y, Jia Y, Wang C, Li X, Zhang X, Liu Y. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14274-14283. [PMID: 35289178 DOI: 10.1021/acsami.2c01196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal quantum dots (CQDs) have a large specific surface area and a complex surface structure. Their properties in diverse optoelectronic applications are largely determined by their surface chemistry. Therefore, it is essential to investigate the surface chemistry of CQDs for improving device performance. Herein, we realized an efficient surface chemistry optimization of lead sulfide (PbS) CQDs for photovoltaics by annealing the CQD solution with concentrated lead halide ligands after the conventional solution-phase ligand exchange. During the annealing process, the colloidal solution was used to transfer heat and create a secondary reaction environment, promoting the desorption of electrically insulating oleate ligands as well as the trap-related surface groups (Pb-hydroxyl and oxidized Pb species). This was accompanied by the binding of more conductive lead halide ligands on the CQD surface, eventually achieving a more complete ligand exchange. Furthermore, this strategy also minimized CQD polydispersity and decreased aggregation caused by conventional solution-phase ligand exchange, thereby contributing to yielding CQD films with twofold enhanced carrier mobility and twofold reduced trap-state density compared with those of the control. Based on these merits, the fabricated PbS CQD solar cells showed high efficiency of 11% under ambient conditions. Our strategy opens a novel and effective avenue to obtain high-efficiency CQD solar cells with diverse band gaps, providing meaningful guidance for controlling ligand reactivity and realizing subtly purified CQDs.
Collapse
Affiliation(s)
- Xinlu Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Ting Fu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Jianping Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yinglin Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yuwen Jia
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Chao Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Xiaofei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Xintong Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| |
Collapse
|
27
|
Shih Y, Li W, Shen J, Chu S, Uen W, Lee H, Lin G, Chen Y, Tu W. Low‐Power Photodetectors Based on PVA Modified Reduced Graphene Oxide Hybrid Solutions. Macromol Rapid Commun 2022; 43:e2100854. [DOI: 10.1002/marc.202100854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐Shan Shih
- Department of Electrical Engineering National Cheng Kung University No.1, University Road Tainan City 701 Taiwan
| | - Wei‐Chen Li
- Department of Electronic Engineering Chung Yuan Christian University No. 200, Chung‐Pei Road, Chungli District Taoyuan City 320 Taiwan
| | - Jun‐Hao Shen
- Department of Electrical Engineering National Cheng Kung University No.1, University Road Tainan City 701 Taiwan
| | - Shao‐Yu Chu
- Department of Electrical Engineering National Cheng Kung University No.1, University Road Tainan City 701 Taiwan
| | - Wu‐Yih Uen
- Department of Electronic Engineering Chung Yuan Christian University No. 200, Chung‐Pei Road, Chungli District Taoyuan City 320 Taiwan
| | - Hsin‐Ying Lee
- Department of Electrical Engineering National Cheng Kung University No.1, University Road Tainan City 701 Taiwan
| | - Gong‐Ru Lin
- Department of Electrical Engineering National Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 10617 Taiwan
| | - Yu‐Cheng Chen
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Wei‐Chen Tu
- Department of Electrical Engineering National Cheng Kung University No.1, University Road Tainan City 701 Taiwan
| |
Collapse
|
28
|
Hong SH, Afraj SN, Huang PY, Yeh YZ, Tung SH, Chen MC, Liu CL. Photoelectric effect of hybrid ultraviolet-sensitized phototransistors from an n-type organic semiconductor and an all-inorganic perovskite quantum dot photosensitizer. NANOSCALE 2021; 13:20498-20507. [PMID: 34854448 DOI: 10.1039/d1nr07084c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Low-dimensional all-inorganic perovskite quantum dots (QDs) have been increasingly developed as photo-sensing materials in the field of photodetectors because of their strong light-absorption capability and broad bandgap tunability. Here, solution-processed hybrid phototransistors built by a dithienothiophenoquinoid (DTTQ) n-type organic semiconductor transport channel mixing with a colloidal CsPbBr3 perovskite QD photosensitizer are demonstrated by manipulating the relative volume ratio from 10 : 0 to 9 : 1, 7 : 3, 5 : 5, 3 : 7, 1 : 9, and 0 : 10. This results in a significantly enhanced photodetection performance owing to the advantages of a high UV absorption cross-section based on the perovskite QDs, efficient carrier transport abilities from the DTTQ semiconductor, and the photogating effect between the bulk heterojunction photocarrier transfer interfaces. The optimized DTTQ : QD (3 : 7) hybrid phototransistor achieves a high photoresponsivity (R) of 7.1 × 105 A W-1, a photosensitivity (S) of 1.8 × 104, and a photodetectivity (D) of 3.6 × 1013 Jones at 365 nm. Such a solution-based fabrication process using a hybrid approach directly integrated into a sensitized phototransistor potentially holds promising photoelectric applications towards advanced light-stimulated photodetection.
Collapse
Affiliation(s)
- Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N Afraj
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ping-Yu Huang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Zi Yeh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
29
|
Xiang H, Xin C, Hu Z, Aigouy L, Chen Z, Yuan X. Long-Term Stable Near-Infrared-Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45957-45965. [PMID: 34520660 DOI: 10.1021/acsami.1c11674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Chenghao Xin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lionel Aigouy
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Xiaojiao Yuan
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
30
|
Chen M, Lu L, Yu H, Li C, Zhao N. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101560. [PMID: 34319002 PMCID: PMC8456226 DOI: 10.1002/advs.202101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Indexed: 05/05/2023]
Abstract
Colloidal quantum dot (QD), a solution-processable nanoscale optoelectronic building block with well-controlled light absorption and emission properties, has emerged as a promising material system capable of interacting with various photonic structures. Integrated QD/photonic structures have been successfully realized in many optical and optoelectronic devices, enabling enhanced performance and/or new functionalities. In this review, the recent advances in this research area are summarized. In particular, the use of four typical photonic structures, namely, diffraction gratings, resonance cavities, plasmonic structures, and photonic crystals, in modulating the light absorption (e.g., for solar cells and photodetectors) or light emission (e.g., for color converters, lasers, and light emitting diodes) properties of QD-based devices is discussed. A brief overview of QD-based passive devices for on-chip photonic circuit integration is also presented to provide a holistic view on future opportunities for QD/photonic structure-integrated optoelectronic systems.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Lihua Lu
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hui Yu
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Cheng Li
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Future DisplayInstitute of XiamenXiamen361005P. R. China
| | - Ni Zhao
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| |
Collapse
|
31
|
Li H, Pi C, Chen W, Zhou M, Wei J, Yi J, Song P, Alexey Y, Zhong Y, Yu X, Qiu J, Xu X. A Highly Stable Photodetector Based on a Lead-Free Double Perovskite Operating at Different Temperatures. J Phys Chem Lett 2021; 12:5682-5688. [PMID: 34114825 DOI: 10.1021/acs.jpclett.1c01416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, considerable breakthroughs have been achieved in the explored photodetectors with improved performance and stability. However, such devices suffer from the drifting parameters (photoresponsivity, response time, and specific detectivity) in the case of evident operating temperature changes. Here, a double perovskite Cs2NaBiCl6-based ultraviolet (UV) photodetector is developed free from thermal disturbance, exhibiting a steady photoresponsivity (≈ 67.98 mA/W) and response time (≈ 16.42 ms) within a wide temperature range (from 273 to 333 K). Further studies demonstrate that the stability of the crystal structure endows the superior photodetection capability. This result unambiguously highlights the great potential of such double perovskite Cs2NaBiCl6 compound as an environmentally friendly alternative for UV photodetectors.
Collapse
Affiliation(s)
- Hao Li
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Chaojie Pi
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Weiqing Chen
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Min Zhou
- College of Physical Science and Technology, Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Jumeng Wei
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233030, Anhui, China
| | - Jianhong Yi
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Peng Song
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yakovlev Alexey
- Kuzbass State Technical University, 28 Vesennyaya Street, 650000 Kemerovo, Russia
| | - Yang Zhong
- College of Advanced Manufacturing Technologies, Tomsk Polytechnic University, 2a Lenin Avenue, 634050 Tomsk, Russia
| | - Xue Yu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Jianbei Qiu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuhui Xu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
32
|
Wu L, Ji Y, Ouyang B, Li Z, Yang Y. Low-Temperature Induced Enhancement of Photoelectric Performance in Semiconducting Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1131. [PMID: 33925638 PMCID: PMC8147110 DOI: 10.3390/nano11051131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
The development of light-electricity conversion in nanomaterials has drawn intensive attention to the topic of achieving high efficiency and environmentally adaptive photoelectric technologies. Besides traditional improving methods, we noted that low-temperature cooling possesses advantages in applicability, stability and nondamaging characteristics. Because of the temperature-related physical properties of nanoscale materials, the working mechanism of cooling originates from intrinsic characteristics, such as crystal structure, carrier motion and carrier or trap density. Here, emerging advances in cooling-enhanced photoelectric performance are reviewed, including aspects of materials, performance and mechanisms. Finally, potential applications and existing issues are also summarized. These investigations on low-temperature cooling unveil it as an innovative strategy to further realize improvement to photoelectric conversion without damaging intrinsic components and foresee high-performance applications in extreme conditions.
Collapse
Affiliation(s)
- Liyun Wu
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
- Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.J.); (B.O.)
| | - Yun Ji
- Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.J.); (B.O.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bangsen Ouyang
- Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.J.); (B.O.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengke Li
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Ya Yang
- Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; (Y.J.); (B.O.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|