1
|
Zhang G, Lin W, Huang F, Sessler J, Khashab NM. Industrial Separation Challenges: How Does Supramolecular Chemistry Help? J Am Chem Soc 2023; 145:19143-19163. [PMID: 37624708 DOI: 10.1021/jacs.3c06175] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The chemical industry and the chemical processes underscoring it are under intense scrutiny as the demands for the transition to more sustainable and environmentally friendly practices are increasing. Traditional industrial separation systems, such as thermally driven distillation for hydrocarbon purification, are energy intensive. The development of more energy efficient separation technologies is thus emerging as a critical need, as is the creation of new materials that may permit a transition away from classic distillation-based separations. In this Perspective, we focus on porous organic cages and macrocycles that can adsorb guest molecules selectively through various host-guest interactions and permit molecular sieving behavior at the molecular level. Specifically, we summarize the recent advances where receptor-based adsorbent materials have been shown to be effective for industrially relevant hydrocarbon separations, highlighting the underlying host-guest interactions that impart selectivity and permit the observed separations. This approach to sustainable separations is currently in its infancy. Nevertheless, several receptor-based adsorbent materials with extrinsic/intrinsic voids or special functional groups have been reported in recent years that can selectively capture various targeted guest molecules. We believe that the understanding of the interactions that drive selectivity at a molecular level accruing from these initial systems will permit an ever-more-effective "bottom-up" design of tailored molecular sieves that, in due course, will allow adsorbent material-based approaches to separations to transition from the laboratory into an industrial setting.
Collapse
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Jonathan Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
3
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Cheng L, Zeng F, Wang X. Study on the Complexation Properties of Promellitic Diimide- Extended Pillar[6]aren and Carboxylate Guests. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Wu JR, Wu G, Yang YW. Pillararene-Inspired Macrocycles: From Extended Pillar[ n]arenes to Geminiarenes. Acc Chem Res 2022; 55:3191-3204. [PMID: 36265167 DOI: 10.1021/acs.accounts.2c00555] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
6
|
Wu JR, Wu G, Cai Z, Li D, Li MH, Wang Y, Yang YW. A Water-Soluble Leggero Pillar[5]arene. Molecules 2022; 27:molecules27196259. [PMID: 36234796 PMCID: PMC9571795 DOI: 10.3390/molecules27196259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
The study of aqueous-phase molecular recognition of artificial receptors is one of the frontiers in supramolecular chemistry since most biochemical processes and reactions take place in an aqueous medium and heavily rely on it. In this work, a water-soluble version of leggero pillar[5]arene bearing eight positively charged pyridinium moieties (CWP[5]L) was designed and synthesized, which exhibited good binding affinities with certain aliphatic sulfonate species in aqueous solutions. Significantly, control experiments demonstrate that the guest binding performance of CWP[5]L is superior to its counterpart water-soluble macrocyclic receptor in traditional pillararenes.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Wang
- Correspondence: (Y.W.); (Y.-W.Y.)
| | | |
Collapse
|
7
|
Wang Y, Yao H, Yang L, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022; 61:e202211853. [DOI: 10.1002/anie.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Fang Wang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
8
|
Wang YF, Yao H, Yang LP, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Fang Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Huan Yao
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu-Pan Yang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Mao Quan
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Wei Jiang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
9
|
Cao J, Wu Y, Li Q, Zhu W, Wang Z, Liu Y, Jie K, Zhu H, Huang F. Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals. Chem Sci 2022; 13:7536-7540. [PMID: 35872814 PMCID: PMC9242012 DOI: 10.1039/d2sc02494b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host-guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.
Collapse
Affiliation(s)
- Jiajun Cao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Weijie Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 PR China
- Green Catalysis Center and College of Chemistry, Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
10
|
Luo D, Tian J, Sessler JL, Chi X. Nonporous Adaptive Calix[4]pyrrole Crystals for Polar Compound Separations. J Am Chem Soc 2021; 143:18849-18853. [PMID: 34748331 DOI: 10.1021/jacs.1c09385] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of molecular crystalline materials for the separation and purification of chemical raw materials, particularly polar compounds with similar physical and chemical properties, represents an ongoing challenge. This is particularly true for volatile feedstocks that form binary azeotropes. Here we report a new cavity-extended version of calix[4]pyrrole (C4P) that readily forms nonporous adaptive crystals (NACs). These C4P-based NACs allow pyridine to be separated from toluene/pyridine mixtures with nearly 100% purity, as well as the removal of 1,4-dioxane from 1,4-dioxane/water mixtures with high adsorption capacity. Removal of the polar guest (pyridine or 1,4-dioxane) from the guest-loaded NACs by heating under vacuum produces the guest-free crystalline form. In the case of both guests, the C4P material could be reused as demonstrated through 10 uptake and release cycles without apparent performance loss.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Ding Y, Alimi LO, Moosa B, Maaliki C, Jacquemin J, Huang F, Khashab NM. Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chem Sci 2021; 12:5315-5318. [PMID: 34163764 PMCID: PMC8179544 DOI: 10.1039/d1sc00440a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The selective separation of benzene (Bz) and cyclohexane (Cy) is one of the most challenging chemical separations in the petrochemical and oil industries. In this work, we report an environmentally friendly and energy saving approach to separate Cy over Bz using thienothiophene cages (ThT-cages) with adaptive porosity. Interestingly, cyclohexane was readily captured selectively from an equimolar benzene/cyclohexane mixture with a purity of 94%. This high selectivity arises from the C-H⋯S, C-H⋯π and C-H⋯N interactions between Cy and the thienothiophene ligand. Reversible transformation between the nonporous guest-free structure and the host-guest assembly, endows this system with excellent recyclability with minimal energy requirements.
Collapse
Affiliation(s)
- Yanjun Ding
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Carine Maaliki
- Laboratoire PCM2E, Université de Tours Parc de Grandmont 37200 Tours France
| | - Johan Jacquemin
- Laboratoire PCM2E, Université de Tours Parc de Grandmont 37200 Tours France
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu XY, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020; 60:9205-9214. [PMID: 32794352 DOI: 10.1002/anie.202010150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jacobs H Jordan
- The Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu X, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Minzan Zuo
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao‐Yu Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
14
|
Li M, Hua B, Liang H, Liu J, Shao L, Huang F. Supramolecular Tessellations via Pillar[ n]arenes-Based Exo-Wall Interactions. J Am Chem Soc 2020; 142:20892-20901. [PMID: 33242958 DOI: 10.1021/jacs.0c11037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular tessellation is a newly emerging and promising area in supramolecular chemistry because of its unique structural aesthetics and potential applications. Herein, we investigate the "exo-wall" interactions of pillar[n]arenes and prepare fantastic hexagonal supramolecular tessellations based on perethylated pillar[6]arenes (EtP6) with electron-deficient molecules 1,5-difluoro-2,4-dinitrobenzene (DFN) and tetrafluoro-1,4-benzoquinone (TFB). The crystal structures clearly confirm that EtP6 can form highly ordered hexagonal 2D tiling patterns with DFN/TFB as linkers through cocrystallization. Moreover, the self-assembled packing arrangements in the ultimate cocrystal superstructures can be adjusted under different crystallization conditions. This work not only explores the rare exo-wall interactions based on pillar[n]arenes but also reports the fabrication of supramolecular tessellations based on pillararenes for the first time, showing a new perspective in supramolecular chemistry.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haozhong Liang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Wu Y, Zhou J, Li E, Wang M, Jie K, Zhu H, Huang F. Selective Separation of Methylfuran and Dimethylfuran by Nonporous Adaptive Crystals of Pillararenes. J Am Chem Soc 2020; 142:19722-19730. [DOI: 10.1021/jacs.0c09757] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|