1
|
Mateen M, Mushtaq M, Mebed AM, Althobaiti HA, Laref A, Khan NA, Muntaha ST, Al-Qaisi S, Ashraf GA. Electronic and adsorption properties of halogen molecule X 2 (X=F, Cl) adsorbed arsenene: First-principles study. Heliyon 2024; 10:e36771. [PMID: 39319147 PMCID: PMC11419850 DOI: 10.1016/j.heliyon.2024.e36771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The geometry, electronic structure, and adsorption properties of halogen molecule X2(X = F, Cl) on arsenene were investigated using first-principles calculations. The adsorption of molecules was considered at various sites and in various orientations on the pristine arsenene (p-As) surface. Both molecules show chemisorption and the crystal orbital Hamiltonian population (COHP) analysis reveals the formation of strong X-As bonds. In particular, the adsorbed molecules spontaneously dissociate into atomic halogen atoms, with a diffusion barrier of 1.91 (1.72) eV for F2(Cl2). The adsorbed X2 molecules induced distortions in the local geometry due to strong interaction with arsenene. Importantly, the formation of X-As bonding remarkably changed the electronic properties, evidenced by the decrease of the actual band gap due to the emergence of defect states within the band gap. For instance, the F2 adsorbed arsenene system (F2-As) exhibited an average band gap of 1.17 eV, and Cl2 adsorbed arsenene (Cl2-As) showed an average band gap of 0.83 eV. In particular, indirect to direct band gap transition was observed for some adsorption configurations. The reduction in band gap resulted in the enhancement of electrical conductivity. These findings suggest that the electronic properties of arsenene can be tuned by halogen decoration.
Collapse
Affiliation(s)
- Muhammad Mateen
- Department of Physics Zhejiang Normal University, Jinhua, 32100, China
| | - Muhammad Mushtaq
- Department of Physics, University of Poonch Rawalakot, Rawalakot, 12350, AJK, Pakistan
| | - Abdelazim M Mebed
- Department of Physics, College of Science, Jouf University, Al-Jouf, Sakaka, P.O. Box, 2014, Saudi Arabia
| | - Hanan A Althobaiti
- Physics Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amel Laref
- Physics Department, College of Science, King Saud University, Riyadh, Riyadh Province, 11451, Saudi Arabia
| | - Niaz Ali Khan
- Department of Physics Zhejiang Normal University, Jinhua, 32100, China
| | - Sidra Tul Muntaha
- Department of Physics Zhejiang Normal University, Jinhua, 32100, China
| | - Samah Al-Qaisi
- Palestinian Ministry of Education and Higher Education, Nablus, Palestine
| | - Ghulam Abbas Ashraf
- New Uzbekistan University, Mustaqillik Ave. 54, Tashkent, 100007, Uzbekistan
| |
Collapse
|
2
|
Grote F, Weintrub BI, Kreßler M, Cao Q, Halbig CE, Kusch P, Bolotin KI, Eigler S. Evidence for Trans-Oligoene Chain Formation in Graphene Induced by Iodine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311987. [PMID: 38506566 DOI: 10.1002/smll.202311987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Functionalization of pristine graphene by hydrogen and fluorine is well studied, resulting in graphane and fluorographene structures. In contrast, functionalization of pristine graphene with iodine has not been reported. Here, the functionalization of graphene with iodine using photochemical activation is presented, which is thermally reversible at 400 °C. Additional dispersive dominant Raman modes that are probed by resonance Raman spectroscopy are observed. Additionally, iodinated graphene is probed by Kelvin probe force microscopy and by transport measurements showing p-doping surpassing non-covalent iodine doping by charge transfer-complex formation. The emergent Raman modes combined with strong p-doping indicate that iodine functionalization is distinct from simple iodine doping. A reaction mechanism based on these findings is proposed, identifying the large size of iodine atoms as the probable cause governing regiochemically controlled addition due to steric hinderance of reactive sites. The modification of the electronic structure is explained by the confinement of 1D trans-oligoene chains between sp3-defects. These results demonstrate the uniqueness of iodine reactivity toward graphene and the modification of the electronic structure of iodinated graphene, highlighting its dependence on the spatial arrangement of substituents.
Collapse
Affiliation(s)
- Fabian Grote
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Benjamin I Weintrub
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Mira Kreßler
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Qing Cao
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Christian E Halbig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Patryk Kusch
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Kirill I Bolotin
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| |
Collapse
|
3
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
4
|
Li X, Xu W, Zhi C. Halogen-powered static conversion chemistry. Nat Rev Chem 2024; 8:359-375. [PMID: 38671189 DOI: 10.1038/s41570-024-00597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic-inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism-performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices.
Collapse
Affiliation(s)
- Xinliang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China.
| | - Wenyu Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Zhang J, Gao X, Guo W, Wu Z, Yin Y, Li Z. Enhanced photocatalytic activity of TiO 2/UiO-67 under visible-light for aflatoxin B1 degradation. RSC Adv 2022; 12:6676-6682. [PMID: 35424625 PMCID: PMC8982250 DOI: 10.1039/d1ra09441f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
TiO2 has great potential in photocatalytic degradation of organic pollutants, but poor visible light response and low separation efficiency of photogenerated electron-hole pairs limit its wide applications. In this study, we have successfully prepared TiO2/UiO-67 photocatalyst through an in situ solvothermal method. The degradation rate of aflatoxin B1 (AFB1) is 98.9% in only 80 min, which is superior to the commercial P25, commercial TiO2 and most of reported photocatalysts under visible light irradiation. In addition, the TiO2/UiO-67 photocatalyst showed excellent recyclability. We demonstrated that the enhanced photocatalytic mechanism was owing to the heterojunction between TiO2 and UiO-67, which enhanced effectively the separation photogenerated charge carriers and visible light response. The free radical trapping tests demonstrated that superoxide radicals (˙O2 -), holes (h+) and hydroxyl radicals (˙OH) were the main active species and then oxidized AFB1 to some small molecules.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xintong Gao
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Wenbo Guo
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Zengnan Wu
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yilin Yin
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Zenghe Li
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the Synthesis of 2D MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103148. [PMID: 34423479 DOI: 10.1002/adma.202103148] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Indexed: 05/21/2023]
Abstract
2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|