1
|
Li B, Chen H, Hang R. Osseointegration-Related Exosomes for Surface Functionalization of Titanium Implants. Biomater Res 2024; 28:0124. [PMID: 39711824 PMCID: PMC11661649 DOI: 10.34133/bmr.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Despite that the clinical application of titanium-based implants has achieved great success, patients' own diseases and/or unhealthy lifestyle habits often lead to implant failure. Many studies have been carried out to modify titanium implants to promote osseointegration and implant success. Recent studies showed that exosomes, proactively secreted extracellular vesicles by mammalian cells, could selectively target and modulate the functions of recipient cells such as macrophages, nerve cells, endothelial cells, and bone marrow mesenchymal stem cells that are closely involved in implant osseointegration. Accordingly, using exosomes to functionalize titanium implants has been deemed as a novel and effective way to improve their osseointegration ability. Herein, recent advances pertaining to surface functionalization of titanium implants with exosomes are analyzed and discussed, with focus on the role of exosomes in regulating the functions of osseointegration-related cells, and their immobilization strategies as well as resultant impact on osseointegration ability.
Collapse
Affiliation(s)
- Boqiong Li
- Department of Materials Science and Engineering,
Jinzhong University, Jinzhong 030619, China
| | - Huanming Chen
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering,
Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering,
Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Zhang Y, Dai J, Hang R, Yao X, Bai L, Wang H, Huang D, Hang R. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration. BIOMATERIALS ADVANCES 2024; 165:214010. [PMID: 39222592 DOI: 10.1016/j.bioadv.2024.214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.
Collapse
Affiliation(s)
- Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030060, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
4
|
Chang L, Luo Y, Li W, Liu F, Guo J, Dai B, Tong W, Qin L, Wang J, Xu J. A comparative study on the effects of biodegradable high-purity magnesium screw and polymer screw for fixation in epiphyseal trabecular bone. Regen Biomater 2024; 11:rbae095. [PMID: 39346687 PMCID: PMC11427752 DOI: 10.1093/rb/rbae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.
Collapse
Affiliation(s)
- Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Weirong Li
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Fangfei Liu
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
5
|
Li Z, Qin B, Liu H, Du S, Liu Y, He L, Xu B, Du L. Mesoporous silica thin film as effective coating for enhancing osteogenesis through selective protein adsorption and blood clotting. Biomed Mater 2024; 19:055040. [PMID: 39094621 DOI: 10.1088/1748-605x/ad6ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The role of blood clots in tissue repair has been identified for a long time; however, its participation in the integration between implants and host tissues has attracted attention only in recent years. In this work, a mesoporous silica thin film (MSTF) with either vertical or parallel orientation was deposited on titania nanotubes surface, resulting in superhydrophilic nanoporous surfaces. A proteomic analysis of blood plasma adsorption revealed that the MSTF coating could significantly increase the abundance of acidic proteins and the adsorption of coagulation factors (XII and XI), with the help of cations (Na+, Ca2+) binding. As a result, both the activation of platelets and the formation of blood clots were significantly enhanced on the MSTF surface with more condensed fibrin networks. The two classical growth factors of platelets-derived growth factors-AB and transformed growth factors-βwere enriched in blood clots from the MSTF surface, which accounted for robust osteogenesis bothin vitroandin vivo. This study demonstrates that MSTF may be a promising coating to enhance osteogenesis by modulating blood clot formation.
Collapse
Affiliation(s)
- Zhe Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Bowen Qin
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huan Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Shimin Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yunxian Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Lixing He
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Boya Xu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Liangzhi Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
6
|
Wu S, Zhang Q, Lin D, Al-Shaaobi BA, Sun Y, Si W, Ding X, Ma P, Shen X, Liu J. Near-Infrared Responsive Biomimetic Titanate/TiO 2-X Heterostructure: A Therapeutic Strategy for Combating Implant-Associated Infection and Enhancing Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43227-43243. [PMID: 39121390 DOI: 10.1021/acsami.4c06154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Implant-associated infections and delayed osseointegration are major challenges for the clinical success of titanium implants. To enhance antibacterial effects and promote early osseointegration, we developed a synergistic photothermal (PTT)/photodynamic (PDT) therapy strategy based on near-infrared (NIR) responsive biomimetic micro/nano titanate/TiO2-X heterostructure coatings (KMNW and NaMNS) in situ constructed on the surface of titanium implants. Specifically, KMNW and NaMNS significantly enhanced photothermal conversion capabilities, achieving localized high temperatures of 48-51 °C and promoting substantial amounts of reactive oxygen species production under 808 nm irradiation. In vitro antibacterial experiments demonstrated that KMNW achieved the highest antibacterial rates against Staphylococcus aureus and Escherichia coli, at 98.78 and 98.33% respectively. Moreover, by mimicking the three-dimensional fibrous network of the extracellular matrix during bone healing, both KMNW and NaMNS markedly promoted the proliferation and osteogenic differentiation of osteoblasts. In vivo implantation studies further confirmed these findings, with KMNW and NaMNS exhibiting superior antibacterial performance under NIR irradiation─94.45% for KMNW and 92.66% for NaMNS. Moreover, KMNW and NaMNS also significantly promoted new bone formation and improved osseointegration in vivo. This study presents a promising PTT/PDT therapeutic strategy for dentistry and orthopedics by employing NIR-responsive biomimetic coatings to combat implant-associated infection and accelerate osseointegration.
Collapse
Affiliation(s)
- Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Qihong Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Dini Lin
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325200, People's Republic of China
| | - Bilal A Al-Shaaobi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yingyue Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Wen Si
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325200, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
7
|
Yu X, Xu R, Huang X, Chen H, Zhang Z, Wong I, Chen Z, Deng F. Size-Dependent Effect of Titania Nanotubes on Endoplasmic Reticulum Stress to Re-establish Diabetic Macrophages Homeostasis. ACS Biomater Sci Eng 2024; 10:4323-4335. [PMID: 38860558 DOI: 10.1021/acsbiomaterials.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.
Collapse
Affiliation(s)
- Xiaoran Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Hongcheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Iohong Wong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| |
Collapse
|
8
|
Bian A, Sun Y, Guan J, Xie L, Yang H, Han P, Lin H, Qiao H, Zhang X, Huang Y. Dopamine-mediated copper-loaded ZnTiO3 antimicrobial coating with immunomodulatory properties effectively enhances vascularised osteogenesis on titanium implants. J IND ENG CHEM 2024; 135:94-109. [DOI: 10.1016/j.jiec.2024.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Wu X, Wang C, Hao P, He F, Yao Z, Wei R, Zhang X. Mesoscopic Model for Reversible Adsorption Stage of Albumin and Fibrinogen on TiO 2 Surface. J Phys Chem B 2024; 128:1900-1914. [PMID: 38289261 DOI: 10.1021/acs.jpcb.3c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The competitive behavior of proteins in the reversible adsorption stage plays a crucial role in determining the composition of the protein layer and the subsequent biological responses to the biomaterial. However, such competitive adsorption is a mesoscopic process at physiological protein concentration, and neither a macroscopic experiment nor microscopic MD (molecular dynamics) simulation is suitable to clarify it. Here, we proposed a mesoscopic DPD (dissipative particle dynamics) model to illustrate the competitive process of albumin and fibrinogen on TiO2 surface with its parameters deduced from our previous MD simulation, and proved the model well retained the diffusion and adsorption properties of proteins in the competitive adsorption on the plane surface. We then applied the model to the competitive adsorption on the surfaces with different nanostructures and observed that when the nanostructure size is much larger than that of protein, the increase in surface area is the main influencing factor; when the nanostructure size is close to that of protein, the coordination between the nanostructure and the size and shape of protein significantly affects the competitive adsorption process. The model has revealed many mechanical phenomena observed in previous experimental studies and has the potential to contribute to the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Xiao Wu
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Chenyang Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Pengfei Hao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti-Icing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhaohui Yao
- University of Chinese Academy of Sciences, Beijing 101408, P. C. China
| | - Ronghan Wei
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiwen Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Shu T, Wang X, Li M, Ma S, Cao J, Sun G, Lai T, Liu S, Li A, Qu Z, Pei D. Nanoscaled Titanium Oxide Layer Provokes Quick Osseointegration on 3D-Printed Dental Implants: A Domino Effect Induced by Hydrophilic Surface. ACS NANO 2024; 18:783-797. [PMID: 38117950 DOI: 10.1021/acsnano.3c09285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Three-dimensional printing is a revolutionary strategy to fabricate dental implants. Especially, 3D-printed dental implants modified with nanoscaled titanium oxide layer (H-SLM) have impressively shown quick osseointegration, but the accurate mechanism remains elusive. Herein, we unmask a domino effect that the hydrophilic surface of the H-SLM facilitates blood wetting, enhances the blood shear rate, promotes blood clotting, and changes clot features for quick osseointegration. Combining computational fluid dynamic simulation and biological verification, we find a blood shear rate during blood wetting of the hydrophilic H-SLM 1.2-fold higher than that of the raw 3D-printed implant, which activates blood clot formation. Blood clots formed on the hydrophilic H-SLM demonstrate anti-inflammatory and pro-osteogenesis effects, leading to a 1.5-fold higher bone-to-implant contact and a 1.8-fold higher mechanical anchorage at the early stage of osseointegration. This mechanism deepens current knowledge between osseointegration speed and implant surface characteristics, which is instructive in surface nanoscaled modification of multiple 3D-printed intrabony implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueliang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Lai
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
12
|
Kunrath MF, Rubensam G, Rodrigues FVF, Marinowic DR, Sesterheim P, de Oliveira SD, Teixeira ER, Hubler R. Nano-scaled surfaces and sustainable-antibiotic-release from polymeric coating for application on intra-osseous implants and trans-mucosal abutments. Colloids Surf B Biointerfaces 2023; 228:113417. [PMID: 37356139 DOI: 10.1016/j.colsurfb.2023.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gabriel Rubensam
- Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel R Marinowic
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Experimental Cardiology Center, Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia D de Oliveira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Li J, Zhao J, Xu Y, Xu A, He F. Titanium surface interacting with blood clot enhanced migration and osteogenic differentiation of bone marrow mesenchymal stem cells. Front Bioeng Biotechnol 2023; 11:1136406. [PMID: 37260826 PMCID: PMC10227579 DOI: 10.3389/fbioe.2023.1136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Blood clot formation is the initial phase upon implantation, and the feature of blood clot orchestrates the following complement system activation, coagulation cascade, and bone marrow mesenchymal stromal cells (BMSCs) recruitment. This study aimed to investigate the effect of implant surface on blood-material interactions and subsequent BMSC cellular behaviors. Methods: This study was established to imitate the physiological process of implantation in vivo and in vitro. Whole blood was incubated with polished titanium (PT) surfaces and sandblasted and double acid-etching (SLA) surfaces for 10 min or 2 h, then seeded with BMSCs. The adhesion, proliferation, migration, and differentiation of cells were studied at specific time points. Titanium implants were implanted into the tibia in vivo and were screwed out after implantation. The activation of the coagulation cascade, platelets, complement system, and clot networks were assessed and further quantitatively analyzed. Results: Compared with the PT surface, the SLA surface induced the earlier and stronger blood coagulation cascade and formed a more stratified clots network with fibrinogen, platelets, and CD14 positive cell. The adhesion, proliferation, and migration of BMSCs were enhanced by pre-incubated surfaces. The higher levels of the osteogenic-related genes, ALP activity, and calcium nodule formation were showed on SLA surfaces with blood incubation. Conclusion: SLA titanium surfaces play a role in influencing the formation of blood clots and coordinating surface-blood interactions and cell biological processes. These findings provide the idea of modifying the blood clots formed on the implant surface by biomaterials modification and thus has implications for the development of better osteogenic biomaterials.
Collapse
Affiliation(s)
| | | | | | - Antian Xu
- *Correspondence: Fuming He, ; Antian Xu,
| | - Fuming He
- *Correspondence: Fuming He, ; Antian Xu,
| |
Collapse
|
14
|
Wen Z, Shi X, Li X, Liu W, Liu Y, Zhang R, Yu Y, Su J. Mesoporous TiO 2 Coatings Regulate ZnO Nanoparticle Loading and Zn 2+ Release on Titanium Dental Implants for Sustained Osteogenic and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15235-15249. [PMID: 36926829 DOI: 10.1021/acsami.3c00812] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two major issues are currently hindering the clinical practice of titanium dental implants for the lack of biological activities: immediate/early loading risks and peri-implantitis. To solve these issues, it is urgent to develop multifunctional implants modified with effective osteogenic and antibacterial properties. Zinc oxide nanoparticles (ZnO NPs) possess superior antibacterial activity; however, they can rapidly release Zn2+, causing cytotoxicity. In this study, a potential dental implant modification was creatively developed as ZnO nanoparticle-loaded mesoporous TiO2 coatings (nZnO/MTC-Ti) via the evaporation-induced self-assembly method (EISA) and one-step spin coating. The mesoporous TiO2 coatings (MTCs) regulated the synthesis and loading of ZnO NPs inside the nanosized pores. The synergistic effects of MTC and ZnO NPs on nZnO/MTC-Ti not only controlled the long-term steady-state release of Zn2+ but also optimized the charge distribution on the surface. Therefore, the cytotoxicity of ZnO NPs was resolved without triggering excessive reactive oxygen species (ROS). The increased extracellular Zn2+ further promoted a favorable intracellular zinc ion microenvironment through the modulation of zinc transporters (ZIP1 and ZnT1). Owing to that, the adhesion, proliferation, and osteogenic activity of bone mesenchymal stem cells (BMSCs) were improved. Additionally, nZnO/MTC-Ti inhibited the proliferation of oral pathogens (Pg and Aa) by inducing bacterial ROS production. For in vivo experiments, different implants were implanted into the alveolar fossa of Sprague-Dawley rats immediately after tooth extraction. The nZnO/MTC-Ti implants were found to possess a higher capability for enhancing bone regeneration, antibiosis, and osseointegration in vivo. These findings suggested the outstanding performance of nZnO/MTC-Ti implants in accelerating osseointegration and inhibiting bacterial infection, indicating a huge potential for solving immediate/early loading risks and peri-implantitis of dental implants.
Collapse
Affiliation(s)
- Zhuo Wen
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Xinyue Shi
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xuejing Li
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Weicai Liu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Yukun Liu
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Renyuan Zhang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yiqiang Yu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Jiansheng Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| |
Collapse
|
15
|
Hang R, Wang Z, Wang H, Zhang Y, Zhao Y, Bai L, Yao X. Matrix stiffness-induced platelet activation determines immunomodulation of macrophages. BIOMATERIALS ADVANCES 2023; 148:213356. [PMID: 36848742 DOI: 10.1016/j.bioadv.2023.213356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Although various bone defect repair materials have been used clinically, the influence of the material properties on bone repair and regeneration as well as the underlying mechanisms are not fully understood. We hypothesize that the material stiffness affects initial platelet activation during hemostasis phase, which in turn mediates subsequent osteoimmunomodulation of macrophages, finally determining clinical outcomes. To verify the hypothesis, the present work used polyacrylamide hydrogels with different stiffness (10, 70, and 260 kPa) as model materials to investigate matrix stiffness induced platelet activation behavior and its mediation on osteoimmunomodulation of macrophages. The results showed that the matrix stiffness was positively related with activation degree of platelets. However, the extracts of platelets incubated on middle-stiff matrix polarized macrophages to pro-healing M2 phenotype when compared with that on soft and stiff matrixes. ELISA results showed when compared with that on soft and stiff matrixes, the platelets incubated on middle-stiff matrix released more TGF-β and PGE2, both of which could polarize macrophages to M2 phenotype. The M2 macrophages could promote angiogenesis of endothelial cells and osteogenesis of bone marrow mesenchymal stem cells, two important and coupled processes involved in bone repair and regeneration. These findings suggest bone repair materials with 70 kPa stiffness can mediate proper platelet activation, which can polarize macrophages to pro-healing M2 phenotype, potentially contributing to bone repair and regeneration.
Collapse
Affiliation(s)
- Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zhenlong Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hui Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd, Taiyuan 030008, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
16
|
The relationship between the growth rate of anodic TiO2 nanotubes, the fluoride concentration and the electronic current. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
17
|
Xin H, Shi Q, Ning X, Chen Y, Jia X, Zhang Z, Zhu S, Li Y, Liu F, Kong L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol Biosci 2023; 23:e2200436. [PMID: 36617598 DOI: 10.1002/mabi.202200436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Indexed: 01/10/2023]
Abstract
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.
Collapse
Affiliation(s)
- He Xin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianwen Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Simin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Jiang Z, Li N, Shao Q, Zhu D, Feng Y, Wang Y, Yu M, Ren L, Chen Q, Yang G. Light-controlled scaffold- and serum-free hard palatal-derived mesenchymal stem cell aggregates for bone regeneration. Bioeng Transl Med 2023; 8:e10334. [PMID: 36684075 PMCID: PMC9842060 DOI: 10.1002/btm2.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Cell aggregates that mimic in vivo cell-cell interactions are promising and powerful tools for tissue engineering. This study isolated a new, easily obtained, population of mesenchymal stem cells (MSCs) from rat hard palates named hard palatal-derived mesenchymal stem cells (PMSCs). The PMSCs were positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD146. They exhibited clonogenicity, self-renewal, migration, and multipotent differentiation capacities. Furthermore, this study fabricated scaffold-free 3D aggregates using light-controlled cell sheet technology and a serum-free method. PMSC aggregates were successfully constructed with good viability. Transplantation of the PMSC aggregates and the PMSC aggregate-implant complexes significantly enhanced bone formation and implant osseointegration in vivo, respectively. This new cell resource is easy to obtain and provides an alternative strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Na Li
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qin Shao
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Danji Zhu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuting Feng
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yang Wang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Mengjia Yu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Lingfei Ren
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qianming Chen
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Guoli Yang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
19
|
Zhao Y, Bai L, Yao X, Hang R, Xiao Y. Understanding LncRNAs in Biomaterials Development for Osteointegration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
20
|
Liu N, Dong J, Li L, Liu F. Osteoimmune Interactions and Therapeutic Potential of Macrophage-Derived Small Extracellular Vesicles in Bone-Related Diseases. Int J Nanomedicine 2023; 18:2163-2180. [PMID: 37131544 PMCID: PMC10149074 DOI: 10.2147/ijn.s403192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Due to the aging of the global population, the burden of bone-related diseases has increased sharply. Macrophage, as indispensable components of both innate immune responses and adaptive immunity, plays a considerable role in maintaining bone homeostasis and promoting bone establishment. Small extracellular vesicles (sEVs) have attracted increasing attention because they participate in cell cross-talk in pathological environments and can serve as drug delivery systems. In recent years, an increasing number of studies have expanded our knowledge about the effects of macrophage-derived sEVs (M-sEVs) in bone diseases via different forms of polarization and their biological functions. In this review, we comprehensively describe on the application and mechanisms of M-sEVs in various bone diseases and drug delivery, which may provide new perspectives for treating and diagnosing human bone disorders, especially osteoporosis, arthritis, osteolysis, and bone defects.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Fanxiao Liu, Department of Orthopedics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China, Tel/Fax +86-0531-68773195, Email
| |
Collapse
|
21
|
Mydin RBSMN, Mahboob A, Sreekantan S, Saharudin KA, Qazem EQ, Hazan R, Wajidi MFF. Mechano-cytoskeleton remodeling mechanism and molecular docking studies on nanosurface technology: Titania nanotube arrays. Biotechnol Appl Biochem 2022. [PMID: 36567620 DOI: 10.1002/bab.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.
Collapse
Affiliation(s)
- Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Alam Mahboob
- Division of Chemistry & Biotechnology, Dongguk University, Gyeongju, Republic of Korea
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Khairul Arifah Saharudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia.,Qdos Interconnect Sdn Bhd, Pulau Pinang, Malaysia
| | - Ekhlas Qaid Qazem
- Materials Technology Group, Industrial Technology Division, Nuclear Malaysia Agency, Kajang, Selangor, Malaysia
| | - Roshasnorlyza Hazan
- Department of Medical Laboratory, College of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | | |
Collapse
|
22
|
Yang Y, Lin Y, Xu R, Zhang Z, Zeng W, Xu Q, Deng F. Micro/Nanostructured Topography on Titanium Orchestrates Dendritic Cell Adhesion and Activation via β2 Integrin-FAK Signals. Int J Nanomedicine 2022; 17:5117-5136. [PMID: 36345509 PMCID: PMC9636866 DOI: 10.2147/ijn.s381222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose In clinical application of dental implants, the functional state of dendritic cells (DCs) has been suggested to have a close relationship with the implant survival rate or speed of osseointegration. Although microscale surfaces have a stable osteogenesis property, they also incline to trigger unfavorable DCs activation and threaten the osseointegration process. Nanoscale structures have an advantage in regulating cell immune response through orchestrating cell adhesion, indicating the potential of hierarchical micro/nanostructured surface in regulation of DCs’ activation without sacrificing the advantage of microscale topography. Materials and Methods Two micro/nanostructures were fabricated based on microscale rough surfaces through anodization or alkali treatment, the sand-blasted and acid-etched (SA) surface served as control. The surface characteristics, in vitro and in vivo DC immune reactions and β2 integrin-FAK signal expression were systematically investigated. The DC responses to different surface topographies after FAK inhibition were also tested. Results Both micro/nano-modified surfaces exhibited unique composite structures, with higher hydrophilicity and lower roughness compared to the SA surface. The DCs showed relatively immature functional states with round morphologies and significantly downregulated β2 integrin-FAK levels on micro/nanostructures. Implant surfaces with micro/nano-topographies also triggered lower levels of DC inflammatory responses than SA surfaces in vivo. The inhibited FAK activation effectively reduced the differences in topography-caused DC activation and narrowed the differences in DC activation among the three groups. Conclusion Compared to the SA surface with solely micro-scale topography, titanium surfaces with hybrid micro/nano-topographies reduced DC inflammatory response by influencing their adhesion states. This regulatory effect was accompanied by the modulation of β2 integrin-FAK signal expression. The β2 integrin-FAK-mediated adhesion plays a critical role in topography-induced DC activation, which represents a potential target for material–cell interaction regulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Wenyi Zeng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Qiong Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Qiong Xu; Feilong Deng, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Ling Yuan Xi Road, Guangzhou, 510055, People’s Republic of China, Tel +86 20 83862537, Fax +86 20 83822807, Email ;
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Ma L, Ke W, Liao Z, Feng X, Lei J, Wang K, Wang B, Li G, Luo R, Shi Y, Zhang W, Song Y, Sheng W, Yang C. Small extracellular vesicles with nanomorphology memory promote osteogenesis. Bioact Mater 2022; 17:425-438. [PMID: 35386457 PMCID: PMC8964989 DOI: 10.1016/j.bioactmat.2022.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Nanotopographical cues endow biomaterials the ability to guide cell adhesion, proliferation, and differentiation. Cellular mechanical memory can maintain the cell status by retaining cellular information obtained from past mechanical microenvironments. Here, we propose a new concept “morphology memory of small extracellular vesicles (sEV)” for bone regeneration. We performed nanotopography on titanium plates through alkali and heat (Ti8) treatment to promote human mesenchymal stem cell (hMSC) differentiation. Next, we extracted the sEVs from the hMSC, which were cultured on the nanotopographical Ti plates for 21 days (Ti8-21-sEV). We demonstrated that Ti8-21-sEV had superior pro-osteogenesis ability in vitro and in vivo. RNA sequencing further confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways, including the PI3K-AKT signaling pathway, MAPK signaling pathway, focal adhesion, and extracellular matrix-receptor interaction. Finally, we decorated the Ti8-21-sEV on a 3D printed porous polyetheretherketone scaffold. The femoral condyle defect model of rabbits was used to demonstrate that Ti8-21-sEV had the best bone ingrowth. In summary, our study demonstrated that the Ti8-21-sEV have memory function by copying the pro-osteogenesis information from the nanotopography. We expect that our study will encourage the discovery of other sEV with morphology memory for tissue regeneration. Nanotopography fabricated on titanium plates has superior promoted hMSCs differentiation ability. sEV extracted from hMSCs which were cultured on Ti8 plates for 21 days had the superior pro-osteogenesis ability. Ti8-21-sEV have memory function through copy the pro-osteogenesis information from nanotopography. RNA sequencing confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways.
Collapse
|
24
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
25
|
Zhao Z, Wang S, Zhang J, Liu L, Jiang L, Xu X, Song Y. A phosphoric anion layer inhibits electronic current generation and nanotube growth during anodization of titanium. NANOSCALE ADVANCES 2022; 4:4597-4605. [PMID: 36341295 PMCID: PMC9595191 DOI: 10.1039/d2na00433j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nowadays the formation mechanism of anodic TiO2 nanotubes has attracted extensive attention. Field-assisted dissolution (TiO2 + 6F- + 4H+ → [TiF6]2- + 2H2O) has been considered as the causal link to the formation and growth of nanotubes. But it is hard for this theory to explain three stages of the current-time curve. Here, the anodization of titanium was studied by adding different concentrations of H3PO4 (0%, 4 wt%, 6 wt%, 8 wt%, and 10 wt%) in ethylene glycol containing the same concentration of NH4F (0.5 wt%). The results prove that under the action of the same concentration of NH4F, the growth rate of nanotubes decreases obviously with the increase of H3PO4 concentration, and the second stage of the current-time curve is also prolonged simultaneously. These experimental facts cannot be interpreted by field-assisted dissolution theory and the viscous flow model. Here, an anion layer formed by H3PO4 and the electronic current theory are ably used to explain these facts reasonably for the first time.
Collapse
Affiliation(s)
- Ziyu Zhao
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Shiyi Wang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Jiazheng Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Longfei Jiang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xiangyue Xu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ye Song
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
26
|
Xiao Y, Ding Y, Zhuang J, Sun R, Sun H, Bai L. Osteoimmunomodulation role of exosomes derived from immune cells on osseointegration. Front Bioeng Biotechnol 2022; 10:989537. [PMID: 36061437 PMCID: PMC9437288 DOI: 10.3389/fbioe.2022.989537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the high success rate of biomedical implants adopted clinically, implant failures caused by aseptic loosening still raise the risk of secondary surgery and a substantial economic burden to patients. Improving the stable combination between the implant and the host bone tissue, achieving fast and high-quality osseointegration can effectively reduce the probability of aseptic loosening. Accumulating studies have shown that the osteoimmunomodulation mediated by immune cells mainly dominated by macrophages plays a pivotal role in osseointegration by releasing active factors to improve the inflammatory microenvironment. However, the mechanism by which osteoimmunomodulation mediates osseointegration remains unclear. Recent studies have revealed that exosomes released by macrophages play a central role in mediating osteoimmunomodulation. The exosomes can be internalized by various cells participating in de novo bone formation, such as endothelial cells and osteoblasts, to intervene in the osseointegration robustly. Therefore, macrophage-derived exosomes with multifunctionality are expected to significantly improve the osseointegration microenvironment, which is promising in reducing the occurrence of aseptic loosening. Based on this, this review summarizes recent studies on the effects of exosomes derived from the immune cells on osseointegration, aiming to provide a theoretical foundation for improving the clinical success rate of biomedical implants and achieving high-quality and high-efficiency osseointegration.
Collapse
Affiliation(s)
- Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
- Nanotechnology Research Institute, Jiaxing University, Jiaxing, China
| | - Yanshu Ding
- Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jingwen Zhuang
- Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruoyue Sun
- Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
27
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
28
|
Li G, Liu W, Liang L, Liu T, Tian Y, Wu H. Preparing Sr-containing nano-structures on micro-structured titanium alloy surface fabricated by additively manufacturing to enhance the anti-inflammation and osteogenesis. Colloids Surf B Biointerfaces 2022; 218:112762. [DOI: 10.1016/j.colsurfb.2022.112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
29
|
Zhao Y, Sun Y, Hang R, Yao R, Zhang Y, Huang D, Yao X, Bai L, Hang R. Biocompatible silane adhesion layer on titanium implants improves angiogenesis and osteogenesis. BIOMATERIALS ADVANCES 2022; 139:213033. [PMID: 35882124 DOI: 10.1016/j.bioadv.2022.213033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Silane adhesion layer strategy has been widely used to covalently graft biomolecules to the titanium implant surface, thereby conferring the implant bioactivity to ameliorate osseointegration. However, few researchers pay attention to the effects of silanization parameters on biocompatibility and biofunctionality of the silane adhesion layers. Accordingly, the present study successfully fabricated the silane adhesion layers with different thickness, intactness, and surface morphologies by introducing 3-aminopropyltriethoxysilane on the alkali-treated titanium surface in time-varied processing of silanization. The regulatory effects of the silane adhesion layers on angiogenesis and osteogenesis were assessed in vitro. Results showed that the prolonged silanization processing time increased the thickness and intactness of the silane adhesion layer and significantly improved its biocompatibility. Notably, the silane adhesion layer prepared after 12 h of silanization exhibited a brain-like surface morphology and benefited the adhesion and proliferation of endothelial cells (ECs) and osteoblasts (OBs). Moreover, the layer promoted angiogenesis via stimulating vascular endothelial growth factor (VEGF) secretion and nitric oxide (NO) production of ECs. Simultaneously, it improved osteogenesis by enhancing alkaline phosphatase (ALP) activity, collagen secretion, and extracellular matrix mineralization of OBs. This work systematically investigated the biocompatibility and biofunctionality of the modified silane adhesion layers, thus providing valuable references for their application in covalently grafting biomolecules on the titanium implant surface.
Collapse
Affiliation(s)
- Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444 China; Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
30
|
Xiao W, Chen W, Wang Y, Zhang C, Zhang X, Zhang S, Wu W. Recombinant DTβ4-inspired porous 3D vascular graft enhanced antithrombogenicity and recruited circulating CD93 +/CD34 + cells for endothelialization. SCIENCE ADVANCES 2022; 8:eabn1958. [PMID: 35857526 PMCID: PMC9278867 DOI: 10.1126/sciadv.abn1958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 05/31/2023]
Abstract
Matching material degradation with host remodeling, including endothelialization and muscular remodeling, is important to vascular regeneration. We fabricated 3D PGS-PCL vascular grafts, which presented tunable polymer components, porosity, mechanical strength, and degrading rate. Furthermore, highly porous structures enabled 3D patterning of conjugated heparin-binding peptide, dimeric thymosin β4 (DTβ4), which played key roles in antiplatelets, fibrinogenesis inhibition, and recruiting circulating progenitor cells, thereafter contributed to high patency rate, and unprecedentedly acquired carotid arterial regeneration in rabbit model. Through single-cell RNA sequencing analysis and cell tracing studies, a subset of endothelial progenitor cells, myeloid-derived CD93+/CD34+ cells, was identified as the main contributor to final endothelium regeneration. To conclude, DTβ4-inspired porous 3DVGs present adjustable physical properties, superior anticoagulating, and re-endothelializing potentials, which leads to the regeneration of small-caliber artery, thus offering a promising tool for vessel replacement in clinical applications.
Collapse
Affiliation(s)
- Weiwei Xiao
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wanli Chen
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yinggang Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xinchi Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Siqian Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wei Wu
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
31
|
Hang R, Wang J, Tian X, Wu R, Hang R, Zhao Y, Sun Y, Wang H. Resveratrol promotes osteogenesis and angiogenesis through mediating immunology of senescent macrophages. Biomed Mater 2022; 17. [PMID: 35830846 DOI: 10.1088/1748-605x/ac80e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 11/12/2022]
Abstract
Orthopedic implants have been used clinically to restore the functions of the compromised bone tissues, but there is still a relatively high risk of failure for elderly people. A critical reason is pro-inflammatory immune microenvironment created by senescent macrophages with homeostasis imbalance impairs osteogenesis and angiogenesis, two major processes involved in implant osseointegration. The present work proposes to use resveratrol as an autophagy inducing agent to upregulate the autophagy level of senescent macrophages to restore homeostasis, consequently generating a favorable immune microenvironment. The results show 0.1-1 µM of resveratrol can induce autophagy of senescent macrophages, promote cell viability and proliferation, reduce intracellular reactive oxygen species (ROS) level, and polarize the cells to pro-healing M2 phenotype. The immune microenvironment created by senescent macrophages upon resveratrol stimulation can promote osteogenesis and angiogenesis, as manifested by upregulated proliferation, alkaline phosphatase activity, type I collagen secretion, and extracellular matrix mineralization of senescent osteoblasts as well as nitric oxide production, migration, and in vitro angiogenesis of senescent endothelial cells. In addition, resveratrol-loaded silk fibroin coatings can be fabricated on titanium surface through electrophoretic co-deposition and the coatings show beneficial effects on the functions of senescent macrophages. Our results suggest resveratrol can be used as surface additive of titanium implants to promote osseointegration of elderly people though regulating immunology of senescent macrophages.
Collapse
Affiliation(s)
- Ruiqiang Hang
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, Shanxi , 030024, CHINA
| | - Jiahui Wang
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Xue Tian
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Ruifeng Wu
- Central Hospital of Tongchuan Mining Bureau, No. 15, Chuankou Road, Tongchuan, Shaanxi Province, Tongchuan, 727000, CHINA
| | - Ruiyue Hang
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Yuyu Zhao
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Yonghua Sun
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Honggang Wang
- Central Hospital of Tongchuan Mining Bureau, No. 15, Chuankou Road, Tongchuan, Shaanxi Province, Taiyuan, 030024, CHINA
| |
Collapse
|
32
|
Zhao Y, Bai L, Zhang Y, Yao R, Sun Y, Hang R, Chen X, Wang H, Yao X, Xiao Y, Hang R. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials 2022; 288:121684. [DOI: 10.1016/j.biomaterials.2022.121684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 12/29/2022]
|
33
|
Shen Y, Xie C, Xiao X. Black phosphorus-incorporated titanium dioxide nanotube arrays for near-infrared–triggered drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Wu B, Tang Y, Wang K, Zhou X, Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO 2 NTAs. Int J Nanomedicine 2022; 17:1865-1879. [PMID: 35518451 PMCID: PMC9064067 DOI: 10.2147/ijn.s362720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
35
|
Hang R, Tian X, Qu G, Zhao Y, Yao R, Zhang Y, Wei W, Yao X, Chu PK. Exosomes derived from magnesium ion-stimulated macrophages inhibit angiogenesis. Biomed Mater 2022; 17. [PMID: 35477160 DOI: 10.1088/1748-605x/ac6b03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Angiogenesis, an essential prerequisite to osteogenesis in bone repair and regeneration, can be mediated by immunoregulation of macrophages. Magnesium and its alloys are promising biodegradable bone implant materials and can affect immunoregulation of macrophages by the degradation products (magnesium ions. Nevertheless, the mechanism of macrophage-derived exosomes stimulated by Mg ions in immunoregulation is still not well understood. Herein, 10-50 mM magnesium ions are shown to inhibit the macrophage viability and proliferation in a dose-dependent manner, but a high concentration results in macrophage apoptosis. The exosomes secreted by macrophages from magnesium ion stimulation inhibit angiogenesis of endothelial cells, as manifested by the suppressed cell viability, proliferation, migration, and tube formation, which arise at least partially from exosome-mediated downregulation of endothelial nitric oxide and the vascular endothelial growth factor. The findings reported in this paper suggest that the bio-functionality of biodegradable magnesium alloys must be considered from the perspective of immunoregulation of macrophage-derived exosomes. Our results also suggest potential cancer therapy by inhibiting tumor-associated angiogenesis.
Collapse
Affiliation(s)
- Ruiqiang Hang
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Xue Tian
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Guangping Qu
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Yuyu Zhao
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Runhua Yao
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Yi Zhang
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Wenfa Wei
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Xiaohong Yao
- Taiyuan University of Technology, No. 79, Yingze West Road, Taiyuan, Shanxi Province, Taiyuan, 030024, CHINA
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, HONG KONG
| |
Collapse
|
36
|
Cui J, Yang Y, Chen P, Hang R, Xiao Y, Liu X, Zhang L, Sun H, Bai L. Differential Nanoscale Topography Dedicates Osteocyte-Manipulated Osteogenesis via Regulation of the TGF-β Signaling Pathway. Int J Mol Sci 2022; 23:ijms23084212. [PMID: 35457035 PMCID: PMC9027032 DOI: 10.3390/ijms23084212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Osteocytes function as the master orchestrator of bone remodeling activity in the telophase of osseointegration. However, most contemporary studies focus on the manipulation of osteoblast and/or osteoclast functionality via implant surface engineering, which neglects the pivotal role of osteocytes in de novo bone formation. It is confirmative that osteocyte processes extend directly to the implant surface, but whether the surface physicochemical properties can affect the functionality of osteocytes and determine the fate of the osseointegration in the final remodeling stage remains to be determined. Titania nanotube arrays (NTAs) with distinct diameters were fabricated to investigate the relationship between the nanoscale topography and the functionality of osteocytes. In vitro results pinpointed that NTA with a diameter of 15 nm (NTA-15) significantly promote osteogenesis of osteocytes via the enhancement of spreading, proliferation, and mineralization. The osteocyte transcriptome of each group further revealed that the TGF-β signaling pathway plays a pivotal role in osteocyte-mediated osteogenesis. The in vivo study definitely mirrored the aforementioned results, that NTA-15 significantly promotes bone formation around the implant. Consequently, nanoscaled topography-induced osteocyte functionality is important in late osseointegration. This suggests that surface designs targeting osteocytes may, therefore, be a potential approach to solving the aseptic loosening of the implant, and thus strengthen osseointegration.
Collapse
Affiliation(s)
- Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.C.); (X.L.); (L.Z.)
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China;
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China;
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Xueting Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.C.); (X.L.); (L.Z.)
| | - Lixin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.C.); (X.L.); (L.Z.)
| | - Hui Sun
- Department of Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
- Correspondence: (H.S.); (L.B.)
| | - Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (J.C.); (X.L.); (L.Z.)
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (H.S.); (L.B.)
| |
Collapse
|
37
|
Simultaneously enhanced osteogenesis and angiogenesis via macrophage-derived exosomes upon stimulation with titania nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112708. [DOI: 10.1016/j.msec.2022.112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
|
38
|
Li X, Zhang Y, Gao L, Ma J, Qiu Y, Xu X, Ou J, Ma W. The growth rate of nanotubes and the quantity of charge during anodization. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2021.107184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
39
|
Ma L, Li G, Lei J, Song Y, Feng X, Tan L, Luo R, Liao Z, Shi Y, Zhang W, Liu X, Sheng W, Wu S, Yang C. Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS NANO 2022; 16:415-430. [PMID: 34935354 DOI: 10.1021/acsnano.1c07150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered small extracellular vesicles (sEVs) are used as tools to enhance therapeutic efficacy. However, such application of sEVs is associated with several issues, including high costs and a high risk of tumorigenesis. Nanotopography has a greater influence on bone-related cell behaviors. However, whether nanotopography specifically mediate sEV content to perform particular biological functions remains unclear. Here, we demonstrate that selective nanotopography may be used to sequentially mediate human bone mesenchymal stem cell (hBMSC) sEVs to enhance the therapeutic efficacy of hBMSCs-EVs for osteogenesis. We subjected sEVs harvested from hBMSCs cultured on polished titanium plates (Ti) or nanotopographical titanium plates (Ti4) after 7, 14, and 21 d for RNA sequencing, and we found that there was no significant difference in sEV-miRNA expression after 7 d. Differentially expressed osteogenic-related microRNAs were founded after 14 days, and KEGG analysis indicated that the main microRNAs were associated with osteogenesis-related pathways, such as TGF-beta, AMPK, and FoxO. A significant difference was found in sEV-miRNAs expression after 21 d. We loaded sEV secreted from hBMSCs cultured on Ti4 after 21 d on 3D-printed porous PEEK scaffolds with poly dopamine (PDA) and found that such scaffolds showed superior osteogenic ability after 6- and 12-weeks. Here, we demonstrate the alkali- and heat-treated nanotopography with the ability of stimulating osteogenic differentiation of hBMSC can induce the secretion of pro-osteogenesis sEV, and we also found that sEVs meditate osteogenesis through miRNA. Thus, whether nanotopography has the ability to regulate other contents of sEVs such as proteins for enhancing osteogenesis needs further research. These findings may help us use nanotopography to extract sEVs for other biomedical applications, including cancer therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Weibin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
40
|
Hang R, Zhao Y, Zhang Y, Yao R, Yao X, Sun Y, Huang D, Hang R. The role of nanopores constructed on micropitted titanium surface on immune responses of macrophages and the potential mechanisms. J Mater Chem B 2022; 10:7732-7743. [DOI: 10.1039/d2tb01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Delayed transition of pro-inflammatory M1 to pro-healing M2 of macrophages (MΦs) on implant surface is one of the most important reasons accounting for poor osseointegration. The present work proposes to...
Collapse
|
41
|
Dai X, Bai Y, Heng BC, Li Y, Tang Z, Lin C, Liu O, He Y, Zhang X, Deng X. Biomimetic hierarchical implant surface promotes early osseointegration in osteoporosis rats by suppressing macrophage activation and osteoclastogenes. J Mater Chem B 2022; 10:1875-1885. [PMID: 35234787 DOI: 10.1039/d1tb02871e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful implant-bone integration remains a formidable challenge in osteoporosis patients, because of excessive inflammatory reaction and osteoclastogenesis around the peri-implant bone tissue. This study designed biomimetic micro/sub-micro hierarchical surfaces on...
Collapse
Affiliation(s)
- Xiaohan Dai
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yiping Li
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Zhangui Tang
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ousheng Liu
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| |
Collapse
|
42
|
Carbon and Neon Ion Bombardment Induced Smoothing and Surface Relaxation of Titania Nanotubes. NANOMATERIALS 2021; 11:nano11092458. [PMID: 34578774 PMCID: PMC8471869 DOI: 10.3390/nano11092458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Titania nanotube arrays with their enormous surface area are the subject of much attention in diverse fields of research. In the present work, we show that not only 60 keV and 150 keV ion bombardment of amorphous titania nanotube arrays yields defect creation within the tube walls, but it also changes the surface morphology: the surface relaxes and smoothens in accordance with a curvature-driven surface material's transport mechanism, which is mediated by radiation-induced viscous flow or radiation-enhanced surface diffusion, while the nanotubes act as additional sinks for the particle surface currents. These effects occur independently of the ion species: both carbon and neon ion bombardments result in comparable surface relaxation responses initiated by an ion energy of 60 keV at a fluence of 1 × 1016 ions/cm2. Using atomic force microscopy and contact angle measurements, we thoroughly study the relaxation effects on the surface topography and surface free energy, respectively. Moreover, surface relaxation is accompanied by further amorphization in surface-near regions and a reduction in the mass density, as demonstrated by Raman spectroscopy and X-ray reflectivity. Since ion bombardment can be performed on global and local scales, it constitutes a versatile tool to achieve well-defined and tunable topographies and distinct surface characteristics. Hence, different types of nanotube arrays can be modified for various applications.
Collapse
|
43
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
44
|
Liu J, Zhao Y, Zhang Y, Yao X, Hang R. Exosomes derived from macrophages upon Zn ion stimulation promote osteoblast and endothelial cell functions. J Mater Chem B 2021; 9:3800-3807. [PMID: 33899897 DOI: 10.1039/d1tb00112d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteogenesis and angiogenesis are both important for implant osseointegration, which can be tailored by immunomodulation of macrophages. Zn, a novel biodegradable material, can modulate macrophage functions in its ionic form. However, whether macrophage-derived exosomes, novel carriers of intracellular communication, participate in the process is still unclear. The present work shows that Zn ions in the concentration range of 0-100 μM have no significant influence on macrophage viability, proliferation, morphology, and secretion amount of exosomes, but generally downregulate the gene expression of both M1 and M2 markers. The exosomes can be ingested continuously by osteoblasts and endothelial cells. The osteoblasts show the highest alkaline phosphatase activity after ingesting the exosomes derived from macrophages upon 4 μM Zn ion stimulation. In contrast, the endothelial cells migrate the furthest distance after ingesting the exosomes upon 20 μM Zn ion stimulation. These results indicate that Zn ions may vary the composition of macrophage-derived exosomes, which in turn affects the osteogenesis and angiogenesis. These findings are meaningful for the surface design of immunomodulatory biomaterials from the perspective of macrophage-derived exosomes.
Collapse
Affiliation(s)
- Jiachuan Liu
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yuyu Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yi Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
45
|
Bai L, Chen P, Tang B, Hang R, Xiao Y. Correlation between LncRNA Profiles in the Blood Clot Formed on Nano-Scaled Implant Surfaces and Osseointegration. NANOMATERIALS 2021; 11:nano11030674. [PMID: 33803187 PMCID: PMC8001142 DOI: 10.3390/nano11030674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/23/2023]
Abstract
Implant surfaces with a nanoscaled pattern can dominate the blood coagulation process resulting in a defined clot structure and its degradation behavior, which in turn influence cellular response and the early phase of osseointegration. Long non-coding (Lnc) RNAs are known to regulate many biological processes in the skeletal system; however, the link between the LncRNA derived from the cells within the clot and osseointegration has not been investigated to date. Hence, the sequence analysis of LncRNAs expressed within the clot formed on titania nanotube arrays (TNAs) with distinct nano-scaled diameters (TNA 15 of 15 nm, TNA 60 of 60 nm, TNA 120 of 120 nm) on titanium surfaces was profiled for the first time. LncRNA LOC103346307, LOC103352121, LOC108175175, LOC103348180, LOC108176660, and LOC108176465 were identified as the pivotal players in the early formed clot on the nano-scaled surfaces. Further bioinformatic prediction results were used to generate co-expression networks of LncRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that distinct nano-scaled surfaces could regulate the biological functions of target mRNAs in the clot. LOC103346307, LOC108175175, and LOC108176660 upregulated mRNAs related to cell metabolism and Wnt, TGF-beta, and VEGF signaling pathways in TNA 15 compared with P-Ti, TNA 60, and TNA 120, respectively, whereas LOC103352121, LOC103348180, and LOC108176465 downregulated mRNAs related to bone resorption and inflammation through negatively regulating osteoclast differentiation, TNF, and NF-kappa signaling pathways. The results indicated that surface nano-scaled characteristics can significantly influence the clot-derived LncRNAs expression profile, which affects osseointegration through multiple signaling pathways of the targeted mRNAs, thus paving a way for better interpreting the link between the properties of a blood clot formed on the nano-surface and de novo bone formation.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030000, China;
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Peiru Chen
- Beijing Proteome Research Center, State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China;
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030000, China;
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030000, China;
- Correspondence: (R.H.); (Y.X.)
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
- Correspondence: (R.H.); (Y.X.)
| |
Collapse
|