1
|
Chaney LE, Hyun WJ, Khalaj M, Hui J, Hersam MC. Fully Printed, High-Temperature Micro-Supercapacitor Arrays Enabled by a Hexagonal Boron Nitride Ionogel Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305161. [PMID: 37540893 PMCID: PMC11681296 DOI: 10.1002/adma.202305161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Indexed: 08/06/2023]
Abstract
The proliferation and miniaturization of portable electronics require energy-storage devices that are simultaneously compact, flexible, and amenable to scalable manufacturing. In this work, mechanically flexible micro-supercapacitor arrays are demonstrated via sequential high-speed screen printing of conductive graphene electrodes and a high-temperature hexagonal boron nitride (hBN) ionogel electrolyte. By combining the superlative dielectric properties of 2D hBN with the high ionic conductivity of ionic liquids, the resulting hBN ionogel electrolyte enables micro-supercapacitors with exceptional areal capacitances that approach 1 mF cm-2. Unlike incumbent polymer-based electrolytes, the high-temperature stability of the hBN ionogel electrolyte implies that the printed micro-supercapacitors can be operated at unprecedentedly high temperatures up to 180 °C. These elevated operating temperatures result in increased power densities that make these printed micro-supercapacitors particularly promising for applications in harsh environments such as underground exploration, aviation, and electric vehicles. The combination of enhanced functionality in extreme conditions and high-speed production via scalable additive manufacturing significantly broadens the technological phase space for on-chip energy storage.
Collapse
Affiliation(s)
- Lindsay E. Chaney
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Woo Jin Hyun
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringGuangdong Technion–Israel Institute of TechnologyShantouGuangdong515063China
| | - Maryam Khalaj
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Janan Hui
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Mark C. Hersam
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineDepartment of Electrical and Computer EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
2
|
Chen G, Yang G, He C, Lan T, He S, Yang H, Liu L, Yang W, Jian S, Zhang Q. High Capacitive Performance of N,O-Codoped Carbon Aerogels Synthesized via a One-Step Chemical Blowing and In Situ Activation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255345 DOI: 10.1021/acs.langmuir.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.
Collapse
Affiliation(s)
- Guoqing Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guangjie Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenweijia He
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Li Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
3
|
Chaney LE, van Beek A, Downing JR, Zhang J, Zhang H, Hui J, Sorensen EA, Khalaj M, Dunn JB, Chen W, Hersam MC. Bayesian Optimization of Environmentally Sustainable Graphene Inks Produced by Wet Jet Milling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309579. [PMID: 38530067 DOI: 10.1002/smll.202309579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/24/2024] [Indexed: 03/27/2024]
Abstract
Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data-driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr-1 with the resulting graphene nanoplatelets being suitable for screen-printed micro-supercapacitors. Finally, life cycle assessment reveals that ethanol-based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.
Collapse
Affiliation(s)
- Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anton van Beek
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hengrui Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - E Alexander Sorensen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer B Dunn
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Wang S, Wang X, Liu Y, Sun G, Kong D, Guo W, Sun H. Regulatory effect of graphene on growth and carbon/nitrogen metabolism of maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1572-1582. [PMID: 37819595 DOI: 10.1002/jsfa.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Leakage of graphene into the environment has resulted from its increasing use. Although the impact of graphene on ecosystems is already in full swing, information regarding its impact on plants is lacking. In particular, the effects of graphene on plant growth and development vary, and basic information on the regulation of carbon and nitrogen metabolism is missing. In the current study, the way in which graphene (0, 25, 50, 100, and 200 g kg-1 ) affects maize seedlings was studied in terms of morphological and biochemical indicators. The purpose of this study was to understand better how graphene regulates plant carbon and nitrogen metabolism and to understand its interactions with leaf structure and plant growth. RESULTS The results showed that 50 g kg-1 graphene increased plant height, stem diameter, leaf area, and dry weight; however, this was inhibited by the high level of graphene (200 g kg-1 ). Further studies indicated that different concentrations of graphene could increase leaf thickness and vascular bundle area as well as the net photosynthetic rate (Pn) of leaves; 25 and 50 g kg-1 graphene enhanced the leaves stomatal conductance (Cond), transpiration rate (Tr), intercellular carbon dioxide (Ci), and chlorophyll content. Higher concentrations decreased the above indicators. At 50 g kg-1 , graphene increased the activity of carbon/nitrogen metabolism enzymes by increasing carbon metabolites (fructose, sucrose, and soluble sugars) and soluble proteins (nitrogen metabolites). These enzymes included sucrose synthase (SS), sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT). CONCLUSION These results indicate that graphene can regulate the activities of key enzymes involved in carbon and nitrogen metabolism effectively and supplement nitrogen metabolism through substances produced by carbon metabolism by improving photosynthetic efficiency, thus maintaining the balance between carbon and nitrogen and promoting plant growth and development. The relationship between these indexes explained the mechanism by which graphene supported the growth of maize seedlings by enhancing photosynthetic carbon metabolism and maintaining metabolic balance. For maize seedling growth, graphene treatment with 50 g kg-1 soil is recommended. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xinyi Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Ying Liu
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Guangxu Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Deyong Kong
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Wei Guo
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, P. R. China, Daqing, China
| | - Haiyan Sun
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Germplasm Improvement, Daqing, China
| |
Collapse
|
5
|
Chang X, Yang Z, Huang A, Katsuyama Y, Lin CW, El-Kady MF, Wang C, Kaner RB. Understanding the Degradation Mechanisms of Conducting Polymer Supercapacitors. Macromol Rapid Commun 2024; 45:e2300237. [PMID: 37232260 DOI: 10.1002/marc.202300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Conducting polymers like polyaniline (PANI) are promising pseudocapacitive electrode materials, yet experience instability in cycling performance. Since polymers often degrade into oligomers, short chain length anilines have been developed to improve the cycling stability of PANI-based supercapacitors. However, the capacitance degradation mechanisms of aniline oligomer-based materials have not been systematically investigated and are little understood. Herein, two composite electrodes based on aniline trimers (AT) and carbon nanotubes (CNTs) are studied as model systems and evaluated at both pre-cycling and post-cycling states through physicochemical and electrochemical characterizations. The favorable effect of covalent bonding between AT and CNTs is confirmed to enhance cycling stability by preventing the detachment of aniline trimer and preserving the electrode microstructure throughout the charge/discharge cycling process. In addition, higher porosity has a positive effect on electron/ion transfer and the adaptation to volumetric changes, resulting in higher conductivity and extended cycle life. This work provides insights into the mechanism of enhanced cycling stability of aniline oligomers, indicating design features for aniline oligomer electrode materials to improve their electrochemical performance.
Collapse
Affiliation(s)
- Xueying Chang
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yuto Katsuyama
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Cheng-Wei Lin
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chenxiang Wang
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Chen T, Shen T, Wang Y, Yu Z, Zhang W, Zhang Y, Ouyang Z, Cai Q, Ji Y, Wang S. In Situ Synthesis of Ni-BTC Metal-Organic Framework@Graphene Oxide Composites for High-Performance Supercapacitor Electrodes. ACS OMEGA 2023; 8:10888-10898. [PMID: 37008133 PMCID: PMC10061599 DOI: 10.1021/acsomega.2c07187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
In response to serious ecological and environmental problems worldwide, a novel graphene oxide (GO) induction method for the in situ synthesis of GO/metal organic framework (MOF) composites (Ni-BTC@GO) for supercapacitors with excellent performance is presented in this study. For the synthesis of the composites, 1,3,5-benzenetricarboxylic acid (BTC) is used as an organic ligand due to its economic advantages. The optimum amount of GO is determined by a comprehensive analysis of morphological characteristics and electrochemical tests. 3D Ni-BTC@GO composites show a similar spatial structure to that of Ni-BTC, revealing that Ni-BTC could provide an effective framework and avoid GO aggregation. The Ni-BTC@GO composites have a more stable electrolyte-electrode interface and an improved electron transfer route than pristine GO and Ni-BTC. The synergistic effects of GO dispersion and Ni-BTC framework on electrochemical behavior are determined, where Ni-BTC@GO 2 achieves the best performance in energy storage performance. Based on the results, the maximum specific capacitance is 1199 F/g at 1 A/g. Ni-BTC@GO 2 has an excellent cycling stability of 84.47% after 5000 cycles at 10 A/g. Moreover, the assembled asymmetric capacitor exhibits an energy density of 40.89 Wh/kg at 800 W/kg, and it still remains at 24.44 Wh/kg at 7998 W/kg. This material is expected to contribute to the design of excellent GO-based supercapacitor electrodes.
Collapse
Affiliation(s)
- Tianen Chen
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R.
China
- Innovation
Laboratory of Materials for Energy and Environment Technologies, Institute
of Oxygen Supply, Tibet University, Lhasa 850000, P.R. China
| | - Tao Shen
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R.
China
| | - Yuanhao Wang
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R.
China
| | - Zexu Yu
- Liaoning
Machinery Research Institute Co., Ltd., No. 56, Beiling Street, Huanggu District, Shenyang 110032, China
| | - Wei Zhang
- PetroChina
Petrochemical Research Institute, Beijing 102206, China
| | - Yi Zhang
- Shanghai
Soong Ching Ling School, Shanghai 200000, China
| | - Zeen Ouyang
- Guiyang
No. 1 High School, Guizhou 550081, China
| | - Qingguo Cai
- Innovation
Laboratory of Materials for Energy and Environment Technologies, Institute
of Oxygen Supply, Tibet University, Lhasa 850000, P.R. China
| | - Yaxiong Ji
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R.
China
| | - Shifeng Wang
- Innovation
Laboratory of Materials for Energy and Environment Technologies, Institute
of Oxygen Supply, Tibet University, Lhasa 850000, P.R. China
| |
Collapse
|
7
|
Wang X, Liang Q, Jiang WJ, Wang P, Liao J, Xiong Z, Li D. Probing Nanoconfined Ion Transport in Electrified 2D Laminate Membranes with Electrochemical Impedance Spectroscopy. SMALL METHODS 2022; 6:e2200806. [PMID: 36148863 DOI: 10.1002/smtd.202200806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The recent emergence of electrically conductive nanoporous membranes based on graphene and other 2D materials opens up new opportunities to revisit some longstanding nanoconfined ion transport problems under electrification. This work probes the ionic resistance in electrified multilayered graphene membranes with electrochemical impedance spectroscopy. This study demonstrates that the combination of additive-free feature and tunable slit pore sizes in the sub-10 nm range in graphene-based membranes has made it possible to deconvolute the different ionic processes from the impedance obtained and examine the exclusive influence of pore size on the ionic resistance in a quantitative manner. The trends revealed for the ionic resistance at the pore entrance and inside the pores under severe nanoconfinement (<2 nm) are found to be generally consistent with the microscale theoretical simulations previously reported. It also allows a quantitative analysis of the relative effects of the external polarization potential and ion identity under nanoconfinement. The results suggest that the classic electrochemical impedance spectroscopy technique, when applied to appropriate nanoporous electrode materials, can provide rich information about nanoconfined ion transport phenomena under electrification for fundamental understanding and application development.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wen-Jie Jiang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peiyao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jinsha Liao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Wang L, Yao H, Chi F, Yan J, Cheng H, Li Y, Jiang L, Qu L. Spatial-Interleaving Graphene Supercapacitor with High Area Energy Density and Mechanical Flexibility. ACS NANO 2022; 16:12813-12821. [PMID: 35914233 DOI: 10.1021/acsnano.2c04989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The booming portable electronics market has raised huge demands for the development of supercapacitors with mechanical flexibility and high power density in the finite area; however, this is still unsatisfied by the currently thickness-confined sandwich design or the in-plane interdigital configuration with limited mechanical features. Here, a spatial-interleaving supercapacitor (SI-SC) is first designed and constructed, in which the graphene microelectrodes are reversely stacked layer by layer within a three-dimensional (3D) space. Because each microelectrode matches well with four counter microelectrodes and all 3D spatial-interleaving microelectrodes have narrow interspaces that maintain the efficient ions transport in the whole device, this SI-SC has a prominent liner capacitance increase along with the device thickness. As a result, the high specific areal capacitance of 36.46 mF cm-2 and 5.34 μWh cm-2 energy density is achieved on the 100 μm thick device. Especially, the microelectrodes in each layer are interdigitated, ensuring the outstanding mechanical flexibility of SI-SC, with ∼98.7% performance retention after 104 cycles of bending tests, realizing the excellent integration of high area energy density and mechanical flexibility in the finite area. Furthermore, the SI-SC units can be easily integrated into wearable electronics to power wristwatches, light-emitting diodes (LEDs), calculators, and so on for practical applications.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengyao Chi
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Lan Jiang
- Laser Micro-/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Wang H, Han Y, Luo P, Zhou Y, Chen Q, Zhu H, Yang Y, Zhang B, Huang K. Advances in Microwave‐Enhanced Chemical Vapor Deposition for Graphene Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hui Wang
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Yuxiang Han
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Pan Luo
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Yanping Zhou
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Qian Chen
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Huacheng Zhu
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Yang Yang
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Bing Zhang
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| | - Kama Huang
- College of Electronics and Information Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
10
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
11
|
Dong X, Sun J, Mu Y, Yu Y, Hu T, Miao C, Huang C, Meng C, Zhang Y. RGO/Manganese Silicate/MOF-derived carbon Double-Sandwich-Like structure as the cathode material for aqueous rechargeable Zn-ion batteries. J Colloid Interface Sci 2021; 610:805-817. [PMID: 34863540 DOI: 10.1016/j.jcis.2021.11.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/26/2023]
Abstract
Aqueous rechargeable Zn-ion batteries (ARZIBs) have been attracting a great deal of attention due to their immense potential in large-scale power grid applications. It is of great significance to explore cathode material with novel designed structure and first-class performances for ARZIBs. Herein, we successfully construct a double-sandwich-like structure, MOF-derived carbon/manganese silicate/reduced graphene oxide/manganese silicate/MOF-derived carbon (denoted as rGO/MnSi/MOF-C), as the cathode material for ARZIBs. Among the double-sandwich-like structure, manganese silicate (Mn2SiO4, denoted as MnSi) is in the middle of internal reduced graphene oxide (rGO) and external MOF-8 derived carbon (MOF-C). This integrated rGO/MnSi/MOF-C with double-sandwich-like structure can not only avert the sluggish electronic conduction progress caused by the conventional three-phase mixture system of rGO, MnSi and MOF-C, but also display promising Zn2+ storing capability. As expected, in mild aqueous 2 M (mol L-1) ZnSO4 + 0.2 M MnSO4 electrolyte, the initial discharge capacity of rGO/MnSi/MOF-C cathode reaches to 246 mAh·g-1, and the peak discharge capacity reaches to 462 mAh·g-1 at 0.1 A·g-1. This work not only involves the novel MnSi-based cathode for ARZIBs, but also first demonstrates our assumption of constructing the double-sandwich-like structure to improve Zn2+ storage. Moreover, the concept "double-sandwich-like structure" provides an idea for synthesizing the integrated carbon/transition metal silicates (TMSs)/carbon structure to boost the electrochemical properties of TMSs for energy-storing devices.
Collapse
Affiliation(s)
- Xueying Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jingjing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yang Mu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yuting Yu
- Wuhan Institute of Biological Products, Co., LTD Wuhan 430070, PR China.
| | - Tao Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Cui Miao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Advanced Aerospace Propulsion Technology, Hubei Military-Civilian Integration and Co-Innovation Center of Aerospace Propulsion and Materials Technology, Wuhan 430072, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yifu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|