1
|
Zhou Z, Chen Y, Ba Y, Xu H, Zuo A, Liu S, Zhang Y, Weng S, Ren Y, Luo P, Cheng Q, Zuo L, Zhu S, Zhou X, Zhang C, Chen Y, Han X, Pan T, Liu Z. Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering. Cell Prolif 2024:e13791. [PMID: 39731215 DOI: 10.1111/cpr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis. Consequently, there has been a surge in the development of non-viral transfection technologies to overcome these challenges in NK cell engineering. Non-viral approaches for CAR-NK cell generation are becoming increasingly essential. Cutting-edge techniques such as trogocytosis, electroporation, lipid nanoparticle (LNP) delivery, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) gene editing and transposons not only enhance the efficiency and safety of CAR-NK cell engineering but also open new avenues for novel therapeutic possibilities. Additionally, the infusion of technologies already successful in CAR T-cell therapy into the CAR-NK paradigm holds immense potential for further advancements. In this review, we present an overview of the potential of NK cells in cancer immunotherapies, as well as non-viral transfection technologies for engineering NK cells.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Zuo
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuhan Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yukang Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Tzadka S, Ureña Martin C, Toledo E, Yassin AAK, Pandey A, Le Saux G, Porgador A, Schvartzman M. A Novel Approach for Colloidal Lithography: From Dry Particle Assembly to High-Throughput Nanofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17846-17856. [PMID: 38549366 DOI: 10.1021/acsami.3c18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 μm. We then demonstrated two nanotechnological applications of this approach. The first one is antireflective structures, fabricated on silicon and sapphire, with different geometries including arrays of bumps and holes and adjusted for different spectral ranges. The second one is smart 3D nanostructures for mechanostimulation of T cells that are used for their effective proliferation, with potential application in cancer immunotherapy. This new approach unleashes the potential of bottom-up nanofabrication and paves the way for nanoscale devices and systems in numerous applications.
Collapse
Affiliation(s)
- Sivan Tzadka
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Carlos Ureña Martin
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Abed Al Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ashish Pandey
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Lightsey S, Sharma B. Natural Killer Cell Mechanosensing in Solid Tumors. Bioengineering (Basel) 2024; 11:328. [PMID: 38671750 PMCID: PMC11048000 DOI: 10.3390/bioengineering11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Natural killer (NK) cells, which are an exciting alternative cell source for cancer immunotherapies, must sense and respond to their physical environment to traffic to and eliminate cancer cells. Herein, we review the mechanisms by which NK cells receive mechanical signals and explore recent key findings regarding the impact of the physical characteristics of solid tumors on NK cell functions. Data suggest that different mechanical stresses present in solid tumors facilitate NK cell functions, especially infiltration and degranulation. Moreover, we review recent engineering advances that can be used to systemically study the role of mechanical forces on NK cell activity. Understanding the mechanisms by which NK cells interpret their environment presents potential targets to enhance NK cell immunotherapies for the treatment of solid tumors.
Collapse
Affiliation(s)
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 23610, USA;
| |
Collapse
|
4
|
Wu X, Yang K, He S, Zhu F, Kang S, Liu B, Sun C, Pang W, Wang Y. Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring. J Colloid Interface Sci 2023; 647:429-437. [PMID: 37269739 DOI: 10.1016/j.jcis.2023.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Surface topography has become a powerful tool to control cell behaviors, however, it's still difficult to monitor cellular microenvironment changes during topography-induced cell responses. Here, a dual-functional platform integrating cell alignment with extracellular pH (pHe) measurement is proposed. The platform is fabricated by assembling gold nanorods (AuNRs) into micro pattern via wettability difference interface method, which provides topographical cues and surface-enhanced Raman scattering (SERS) effect for cell alignment and biochemical detection respectively. Results demonstrate that contact guidance and cell morphology changes are achieved by the AuNRs micro pattern, and pHe are also obtained by the changes of SERS spectra during cell alignment, where the pHe near cytoplasm is lower than nucleus, revealing the heterogeneity of extracellular microenvironment. Moreover, a correlation between lower extracellular pH and higher cell migration ability is revealed, and AuNRs micro pattern can differentiate cells with different migration ability, which may be an inheritable character during cell division. Furthermore, mesenchymal stem cells response dramatically to AuNRs micro pattern, showing different morphology and increased pHe level, offering the potential of impacting stem cell differentiation. This approach provides a new idea for the research of cell regulation and response mechanism.
Collapse
Affiliation(s)
- Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shenghui Kang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
6
|
Zhan M, Guo Y, Shen M, Shi X. Nanomaterial‐Boosted Tumor Immunotherapy Through Natural Killer Cells. ADVANCED NANOBIOMED RESEARCH 2022; 2. [DOI: 10.1002/anbr.202200096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Natural killer (NK)‐cell immunotherapy as an alternative to T‐cell immunotherapy has been widely used in clinical cell immunotherapy of various tumors. Despite the surprising findings, the widespread applications of NK cells are still limited by the insufficient expansion and short lifespan of adoptive NK cells in vivo, the poor penetration of NK cells in solid tumors, as well as the immunosuppressive tumor microenvironment that may cause the inactivation of NK cells. Fortunately, the emergence of nanomaterials provides many opportunities to address these vexing problems, thus overcoming the barriers faced by NK cells and promoting the tumor inhibitory efficacy of NK cells. Herein, the recent advances in the rational design of nanomaterials for boosting the NK cell‐based immunotherapy, mainly through enhancing NK cell engagement with tumors, boosting NK cell activation or expansion, as well as redirecting NK cells to tumor cells, are reviewed. Lastly, the design and preparation of next‐generation nanomaterials that aim to further boost the NK cell‐based immunotherapy are briefly discussed.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| |
Collapse
|
7
|
Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. J Control Release 2022; 343:379-391. [DOI: 10.1016/j.jconrel.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|