1
|
Gao Q, Liu R, Wu Y, Wang F, Wu X. Versatile self-assembled near-infrared SERS nanoprobes for multidrug-resistant bacterial infection-specific surveillance and therapy. Acta Biomater 2024; 189:559-573. [PMID: 39370092 DOI: 10.1016/j.actbio.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The rise of multidrug-resistant bacteria (MDRB) has made bacterial infection one of the biggest health threats, causing numerous antibiotics to fail. Real-time monitoring of bacterial disease treatment efficacy at the infection site is required. Herein, we report a versatile Raman tag 3,3'-diethylthiatricarbocyanine iodide (DTTC)-conjugated star-shaped Au-MoS2@hyaluronic acid (AMD@HA) nanocomposite as a surface-enhanced Raman scattering (SERS) nanoprobe for quick bacterial identification and in-situ eradication. Localized surface plasmon resonance (LSPR) from the hybrid metallic nanostructure makes AMD@HA highly responsive to the near-infrared laser, enabling it to demonstrate a photothermal (PTT) effect, increased SERS activity, and peroxidase-like catalytic reaction to release reactive oxygen species. The tail vein injection of AMD@HA nanoprobes is invasive, however SERS imaging for bacterial identification is non-invasive and sensitive, making it an efficient residual bacteria monitoring method. The detection limit for methicillin-resistant Staphylococcus aureus (MRSA) is as low as 102 CFU·mL-1, and the substrates allow for taking 120 s to acquire a Raman image of 1600 (40 × 40) pixels. In mouse models of MRSA-induced wound infection and skin abscess, the combination of AMD@HA-mediated PTT and catalytic therapy demonstrates a synergistic effect in promoting wound healing through rapid sterilization. This SERS-guided therapeutic approach exhibits little toxicity and does not cause considerable collateral damage, offering a highly promising intervention for treating diseases caused by MDRB. STATEMENT OF SIGNIFICANCE: This research introduces a SERS nanoprobe, AMD@HA, for the rapid identification and eradication of multidrug-resistant bacteria (MDRB), a critical health threat. The nanoprobe leverages localized surface plasmon resonance for photothermal therapy and enhanced Raman signals, offering a sensitive, non-invasive diagnostic tool. With a low detection limit for MRSA and a synergistic therapeutic effect in mouse models, our approach holds significant promise for treating MDRB-driven infections with minimal toxicity, advancing the field of antimicrobial strategies.
Collapse
Affiliation(s)
- Qian Gao
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China
| | - Ruocan Liu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China.
| | - Fuxiang Wang
- School of Physics and Optoelectronic Engineering, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
3
|
Wang W, Luo H, Wang H. Recent advances in micro/nanomotors for antibacterial applications. J Mater Chem B 2024; 12:5000-5023. [PMID: 38712692 DOI: 10.1039/d3tb02718j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Currently, the rapid spread of multidrug-resistant bacteria derived from the indiscriminate use of traditional antibiotics poses a significant threat to public health worldwide. Moreover, established bacterial biofilms are extremely difficult to eradicate because of their high tolerance to traditional antimicrobial agents and extraordinary resistance to phagocytosis. Hence, it is of universal significance to develop novel robust and efficient antibacterial strategies to combat bacterial infections. Micro/nanomotors exhibit many intriguing properties, including enhanced mass transfer and micro-mixing resulting from their locomotion, intrinsic antimicrobial capabilities, active cargo delivery, and targeted treatment with precise micromanipulation, which facilitate the targeted delivery of antimicrobials to infected sites and their deep permeation into sites of bacterial biofilms for fast inactivation. Thus, the ideal antimicrobial activity of antibacterial micro/nanorobots makes them desirable alternatives to traditional antimicrobial treatments and has aroused extensive interest in recent years. In this review, recent advancements in antibacterial micro/nanomotors are briefly summarized, focusing on their synthetic methods, propulsion mechanism, and versatile antibacterial applications. Finally, some personal insights into the current challenges and possible future directions to translate proof-of-concept research to clinic application are proposed.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hangyu Luo
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Han Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Kim DH, Kim J, Lee CY, Hong MH, Heo JH, Lee JH. Advancing oral health: the antimicrobial power of inorganic nanoparticles. JOURNAL OF THE KOREAN CERAMIC SOCIETY 2024; 61:201-223. [DOI: 10.1007/s43207-023-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2025]
|
5
|
Ke Re Mu ALM, Liang ZL, Chen L, Tu Xun AKBE, A Bu Li Ke Mu MMTAL, Wu YQ. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomed Pharmacother 2024; 172:116228. [PMID: 38320333 DOI: 10.1016/j.biopha.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). METHODS PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone healing. Evaluation of viable bacteria was performed. The cytocompatibility of 3D-printed composite scaffolds in vitro was detected using human bone marrow mesenchymal stem cells (BMSCs). Long-term safety of the scaffolds in rabbits was evaluated. RESULTS The linezolid-loaded PLGA-HA scaffolds exhibited a sustained release of linezolid and showed significant antibacterial effects. In the IBD rabbit models implanted with the scaffolds, the linezolid-loaded PLGA-HA scaffolds promoted bone healing and attenuated bone infection. The PLGA-HA scaffolds carrying linezolid upregulated the expression of osteogenic genes including collagen I, runt-related transcription factor 2, and osteocalcin. The linezolid-loaded PLGA-HA scaffolds promoted the proliferation and osteogenesis of BMSCs in vitro via the PI3K/AKT pathway. Moreover, the rabbits implanted with the linezolid-loaded scaffolds showed normal biochemical profiles and normal histology, which suggested the safety of the linezolid-loaded scaffolds. CONCLUSION Overall, the linezolid-loaded PLGA-HA scaffolds fabricated by 3D printing exerts significant bone repair and anti-infection effects.
Collapse
Affiliation(s)
- A Li Mu Ke Re Mu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Zhi Lin Liang
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Linlin Chen
- Nanjing Genebios Biotechnology Co., Ltd., Nanjing 21100, China
| | - Ai Ke Bai Er Tu Xun
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | | | - Yuan Quan Wu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China.
| |
Collapse
|
6
|
Kannappan S, Jo K, Kim KK, Lee JH. Utilizing peptide-anchored DNA templates for novel programmable nanoparticle assemblies in biological macromolecules: A review. Int J Biol Macromol 2024; 256:128427. [PMID: 38016615 DOI: 10.1016/j.ijbiomac.2023.128427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Biological macromolecules such as proteins and DNA are known to self-assemble into various structural moieties with distinct functions. While nucleic acids are the structural building blocks, peptides exemplify diversity as tailorable biochemical units. Thus, combining the scaffold properties of the biomacromolecule DNA and the functionality of peptides could evolve into a powerful method to obtain tailorable nano assemblies. In this review, we discuss the assembly of non-DNA-coated colloidal NPs on DNA/peptide templates using functional anchors. We begin with strategies for directly attaching metallic NPs to DNA templates to ascertain the functional role of DNA as a scaffold. Followed by methods to assemble peptides onto DNA templates to emphasize the functional versatility of biologically abundant DNA-binding peptides. Next, we focus on studies corroborating peptide self-assembling into macromolecular templates onto which NPs can attach to emphasize the properties of NP-binding peptides. Finally, we discuss the assembly of NPs on a DNA template with a focus on the bifunctional DNA-binding peptides with NP-binding affinity (peptide anchors). This review aims to highlight the immense potential of combining the functional power of DNA scaffolds and tailorable functionalities of peptides for NP assembly and the need to utilize them effectively to obtain tailorable hierarchical NP assemblies.
Collapse
Affiliation(s)
- Shrute Kannappan
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Mao Z, Peng X, Chen H. Sunlight propelled two-dimensional nanorobots with enhanced mechanical damage of bacterial membrane. WATER RESEARCH 2023; 235:119900. [PMID: 37001231 DOI: 10.1016/j.watres.2023.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pollution in water sources poses a serious threat to human health and causes a water crisis. To treat it efficiently and ecologically, many studies have explored the antibacterial properties of two-dimensional nanomaterials in water, but their static antibacterial modes limit their effectiveness. In this work, we designed a facile and effective antibacterial nanorobots by loading super small gold nanorods (sAuNR) onto the surface of MXene nanosheets (MXene@sAuNR). The plasmon resonance effect of sAuNR can enhance the optical absorption cross section of the nanorobots, thereby improving their motion ability under irradiation and then causing cell membrane mechanical damage to bacteria. Our research proved that nanorobots with good optical driving characteristics displayed gratifying antibacterial properties even at ultra-low concentration as 5 µg/mL within 30 min. Furthermore, the nanorobots showed satisfactory antibacterial efficiency in real river samples under sunlight irradiation. These nanorobots presented in this study provides valuable insights towards designing self-energy collection and self-driving antibacterial materials that overcome the shortcomings of conventional static antibacterial methods. As sunlight is the cheapest and natural light source, these nanorobots have opened an effective and sustainable way for large-scale treatment of bacterial pollution in water.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinsheng Peng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Oh JH, Martinez AD, Cao H, George GW, Cobb JS, Sharma P, Fassero LA, Arole K, Carr MA, Lovell KM, Shukla J, Saed MA, Tandon R, Marquart ME, Moores LC, Green MJ. Radio Frequency Heating of Washable Conductive Textiles for Bacteria and Virus Inactivation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43732-43740. [PMID: 36121103 DOI: 10.1021/acsami.2c11493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Aimee D Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Garrett W George
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Jared S Cobb
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lauren A Fassero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Kailash Arole
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Mary A Carr
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - K Michael Lovell
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Jayanti Shukla
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Mohammad A Saed
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi38655, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
9
|
Kim DH, Bae J, Heo JH, Park CH, Kim EB, Lee JH. Nanoparticles as Next-Generation Tooth-Whitening Agents: Progress and Perspectives. ACS NANO 2022; 16:10042-10065. [PMID: 35704786 DOI: 10.1021/acsnano.2c01412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.
Collapse
Affiliation(s)
- Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jina Bae
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Cheol Hyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eun Bi Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zhang X, He J, Qiao L, Wang Z, Zheng Q, Xiong C, Yang H, Li K, Lu C, Li S, Chen H, Hu X. 3D
printed
PCLA
scaffold with nano‐hydroxyapatite coating doped green tea
EGCG
promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif 2022; 55:e13289. [PMID: 35791492 PMCID: PMC9528762 DOI: 10.1111/cpr.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Jian He
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Liang Qiao
- The First Affiliated Hospital College of Clinical Medicine of Henan University of Science and Technology Luoyang People's Republic of China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu Sichuan China
| | - Hui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology Sichuan University Chengdu China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Sanqiang Li
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| |
Collapse
|
11
|
Lim H, Chang J, Kim KI, Moon Y, Lee S, Lee B, Lee JH, Lee J. On-chip selection of adenosine aptamer using graphene oxide-coated magnetic nanoparticles. BIOMICROFLUIDICS 2022; 16:044102. [PMID: 35909647 PMCID: PMC9337878 DOI: 10.1063/5.0095419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a method that is generally used for developing aptamers, which have arisen the promising alternatives for antibodies. However, conventional SELEX methods have limitations, such as a limited selection of target molecules, time-consuming and complex fabrication processes, and labor-intensive processes, which result in low selection yields. Here, we used (i) graphene oxide (GO)-coated magnetic nanoparticles in the selection process for separation and label-free detection and (ii) a multilayered microfluidic device manufactured using a three-dimensionally printed mold that is equipped with automated control valves to achieve precise fluid flows. The developed on-chip aptamer selection device and GO-coated magnetic nanoparticles were used to screen aptamer candidates for adenosine in eight cycles of the selection process within approximately 2 h for each cycle. Based on results from isothermal titration calorimetry, an aptamer with a dissociation constant of 18.6 ± 1.5 μM was selected. Therefore, the on-chip platform based on GO-coated magnetic nanoparticles provides a novel label-free screening technology for biosensors and micro/nanobiotechnology for achieving high-quality aptamers.
Collapse
Affiliation(s)
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngkwang Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| | - Jinkee Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| |
Collapse
|
12
|
Guo J, Wei W, Zhao Y, Dai H. Iron oxide Nanoparticles (IONPs) with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Regen Biomater 2022; 9:rbac041. [PMID: 35812348 PMCID: PMC9258688 DOI: 10.1093/rb/rbac041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Metal-based nanomaterials usually have broad-spectrum antibacterial properties, low biological toxicity, and no drug resistance due to their intrinsic enzyme-like catalytic properties and external field (magnetic, thermal, acoustic, optical, electrical) responsiveness. Herein, Iron oxide (Fe3O4) nanoparticles (IONPs) synthesized by us have good biosafety, excellent photothermal conversion ability, and peroxidase-like catalytic activity, which can be used to construct a photothermal-enzymes combined antibacterial treatment platform. IONPs with peroxide-like catalytic activity can induce H2O2 to catalyze the production of •OH in a slightly acidic environment, thus achieving certain bactericidal effects and increasing the sensitivity of bacteria to heat. When stimulated by NIR light, the photothermal effect could destroy bacterial cell membranes, resulting in cleavage and inactivation of bacterial protein, DNA, or RNA. Meanwhile, it can also improve the catalytic activity of peroxidase-like, and promote IONPs to catalyze the production of more •OH for killing bacteria. After IONPs synergistic treatment, the antibacterial rate of Escherichia coli and Staphylococcus aureus reached nearly 100%. It also has an obvious killing effect on bacteria in infected wounds of mice, and can effectively promote the healing of S. aureus-infected wounds, which has great application potential in clinical anti-infection treatment.
Collapse
Affiliation(s)
- Jiaxin Guo
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Wenying Wei
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Yanan Zhao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Honglian Dai
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory , Xianhu hydrogen Valley, Foshan 528200, China
- Shenzhen Research Institute of Wuhan University of Technology , Shenzhen 518000, China
| |
Collapse
|
13
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
14
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
15
|
Gu M, Huang L, Wang Z, Guo W, Cheng L, Yuan Y, Zhou Z, Hu L, Chen S, Shen C, Tang BZ, Ye R. Molecular Engineering of Laser-Induced Graphene for Potential-Driven Broad-Spectrum Antimicrobial and Antiviral Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102841. [PMID: 34672086 DOI: 10.1002/smll.202102841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/04/2021] [Indexed: 05/08/2023]
Abstract
Worldwide, countless deaths have been caused by the coronavirus disease 2019. In addition to the virus variants, an increasing number of fatal fungal infections have been reported, which further exacerbates the scenario. Therefore, the development of porous surfaces with both antiviral and antimicrobial capacities is of urgent need. Here, a cost-effective, nontoxic, and metal-free strategy is reported for the surface engineering of laser-induced graphene (LIG). The authors covalently engineer the surface potential of the LIG from -14 to ≈+35 mV (LIG+ ), enabling both high-efficiency antimicrobial and antiviral performance under mild conditions. Specifically, several candidate microorganisms of different types, including Escherichia coli, Streptomyces tenebrarius, and Candida albicans, are almost completely inactivated after 10-min solar irradiation. LIG+ also exhibits a strong antiviral effect against human coronaviruses: 99% HCoV-OC43 and 100% HCoV-229E inactivation are achieved after 20-min treatment. Such enhancement may also be observed against other types of pathogens that are heat-sensitive and oppositely charged. Besides, the covalent modification strategy alleviates the leaching problem, and the low cytotoxicity of LIG+ makes it advantageous. This study highlights the synergy of surface potential and photothermal effect in the inactivation of pathogens and it provides a direction for designing porous materials for airborne disease removal and water disinfection.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Le Cheng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhou Zhou
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Liu Hu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sijie Chen
- Ming Wai Lau Center for Reparative Medicine, Karolinska Institute, Sha Tin, Hong Kong, 999077, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, Guangdong, 510640, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
16
|
Cheng S, Tu Z, Zheng S, Cheng X, Han H, Wang C, Xiao R, Gu B. An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tags. Anal Chim Acta 2021; 1187:339155. [PMID: 34753577 DOI: 10.1016/j.aca.2021.339155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
A novel surface-enhanced Raman scattering (SERS)-based analytical technique was proposed to simultaneously detect two highly pathogenic bacteria, namely, Staphylococcus aureus (S. aureus) and Listeria monocytogenes (L. mono) by using a dual-recognition pattern with wheat germ agglutinin (WGA) and nucleic acid aptamers. WGA was modified onto Fe3O4@Au magnetic nanoparticles (MNPs) for the efficient capture of S. aureus and L. mono in complex samples (orange juice, extracts of lettuce, and human urine) within 15 min. The streptavidin (SA)/aptamers co-functionalized SERS tags were fabricated by covalent attaching two different Raman reporters and SA molecules onto 45 nm Au NPs and then conjugated with two biotin-aptamers that specifically bind to their target bacteria with high affinity and stability. The combined use of high-sensitive SERS tags, WGA-mediated magnetic enrichment, and SA-mediated aptamer conjugation remarkably improved the assay sensitivity. Under optimized conditions, the developed SERS biosensor can simultaneously detect the two target bacteria with high detection sensitivity (<6 cells/mL), favorable linear relation (10-107 cells/mL), and high accuracy (recovery rate <7.03%). Therefore, the proposed SERS platform is rapid, sensitive, easy to use, and thus show potential as a tool for the timely identification of pathogenic bacteria in real samples.
Collapse
Affiliation(s)
- Siyun Cheng
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zhijie Tu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shuai Zheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiaodan Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Han Han
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Chongwen Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, PR China; Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China.
| |
Collapse
|
17
|
Hao S, Yang D, Zhao L, Shi F, Ye G, Fu H, Lin J, Guo H, He R, Li J, Chen H, Khan MF, Li Y, Tang H. EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22094946. [PMID: 34066609 PMCID: PMC8125375 DOI: 10.3390/ijms22094946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.
Collapse
Affiliation(s)
- Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
- Correspondence: (Y.L.); (H.T.)
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
- Correspondence: (Y.L.); (H.T.)
| |
Collapse
|