1
|
Wang R, Liu Q, Dai S, Liu CM, Liu Y, Sun ZY, Li H, Zhang CJ, Wang H, Xu CY, Shao WZ, Meixner AJ, Zhang D, Li Y, Zhen L. Defect Emission and Its Dipole Orientation in Layered Ternary Znln 2 S 4 Semiconductor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305658. [PMID: 37798674 DOI: 10.1002/smll.202305658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.
Collapse
Affiliation(s)
- Rui Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sheng Dai
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Chao-Ming Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhao-Yuan Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang-Jin Zhang
- Chinese Academy of Sciences Hefei Institutes of Physical Science, High Magnetic Field Laboratory of Anhui Province, Hefei, 230031, China
| | - Han Wang
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wen-Zhu Shao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
2
|
Zhang M, Xue H, Han X, Zhang Z, Jiang Y, Deng Y, Hu W. Accelerate charge separation in Cu 2O/MoO 2 photocathode for photoelectrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 650:284-293. [PMID: 37413862 DOI: 10.1016/j.jcis.2023.06.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Photoelectrocatalyzing water reduction is a potential approach to building a green and sustainable society. As a benchmark photocathode, Cu2O receives much attention but faces serious charge recombination and photocorrosion. This work prepared an excellent Cu2O/MoO2 photocathode via in situ electrodeposition. A systematical study of theory and experiment demonstrates that MoO2 not only effectively passivates the surface state of Cu2O as well as accelerates reaction kinetics as a cocatalyst, but also promotes the directional migration and separation of photogenerated charge. As expected, the constructed photocathode exhibits a highly enhanced photocurrent density and an appealing energy transformation efficacy. Importantly, MoO2 can inhibit the reduction of Cu+ in Cu2O via a formed internal electric field and shows excellent photoelectrochemical stability. These findings pave the way to designing a high-activity photocathode with high stability.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Xue
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhijia Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yong Jiang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Zhu L, Liang Z, Li H, Xu Q, Jiang D, Du H, Zhu C, Li H, Lu Z, Yuan Y. A π-Conjugated Van der Waals Heterostructure Between Single-Atom Ni-Anchored Salphen-Based Covalent Organic Framework and Polymeric Carbon Nitride for High-Efficiency Interfacial Charge Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301017. [PMID: 37066713 DOI: 10.1002/smll.202301017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Semiconductor-based heterostructures have exhibited great promise as a photocatalyst to convert solar energy into sustainable chemical fuels, however, their solar-to-fuel efficiency is largely restricted by insufficient interfacial charge separation and limited catalytically active sites. Here the integration of high-efficiency interfacial charge separation and sufficient single-atom metal active sites in a 2D van der Waals (vdW) heterostructure between ultrathin polymeric carbon nitride (p-CN) and Ni-containing Salphen-based covalent organic framework (Ni-COF) nanosheets is illustrated. The results reveal a NiN2 O2 chemical bonding in NiCOF nanosheets, leading to a highly separated single-atom Ni sites, which will function as the catalytically active sites to boost solar fuel production, as confirmed by X-ray absorption spectra and density functional theory calculations. Using ultrafast femtosecond transient adsorption (fs-TA) spectra, it shows that the vdW p-CN/Ni-COF heterostructure exhibits a faster decay lifetime of the exciton annihilation (τ = 18.3 ps) compared to that of neat p-CN (32.6 ps), illustrating an efficiently accelerated electron transfer across the vdW heterointerface from p-CN to Ni-COF, which thus allows more active electrons available to participate in the subsequent reduction reactions. The photocatalytic results offer a chemical fuel generation rate of 2.29 mmol g-1 h-1 for H2 and 6.2 µmol g-1 h-1 for CO, ≈127 and three times higher than that of neat p-CN, respectively. This work provides new insights into the construction of a π-conjugated vdW heterostructure on promoting interfacial charge separation for high-efficiency photocatalysis.
Collapse
Affiliation(s)
- Liang Zhu
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Zhifu Liang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information and the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Qiunian Xu
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Daochuan Jiang
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Haiwei Du
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Chuhong Zhu
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Huiquan Li
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information and the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information and the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yupeng Yuan
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
4
|
Li X, Li Q, Shang W, Lou Y, Chen J. Methylthio-functionalized UiO-66 to promote the electron-hole separation of ZnIn 2S 4 for boosting hydrogen evolution under visible light illumination. Dalton Trans 2023; 52:6730-6738. [PMID: 37129147 DOI: 10.1039/d3dt00477e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Solar-driven water splitting offers a leading-edge approach to storing abundant and intermittent solar energy and producing hydrogen as a clean and sustainable energy carrier. More importantly, constructing well-designed photocatalysts is a promising approach to develop clean hydrogen energy. In this paper, flower spherical UiO-66-(SCH3)2/ZnIn2S4 (UiOSC/ZIS) photocatalysts are successfully synthesized by a simple two-step hydrothermal method, and they exhibit high hydrogen production activity in light-driven water splitting. The optimized 30-UiOSC/ZIS (the content of UiOSC was 30 mg) composite exhibits optimal hydrogen production activity with a hydrogen production of 3433 μmol g-1 h-1, which is 5 and 235 times higher than that of pure ZIS and UiOSC, respectively. In addition, a long-cycling stability test has shown that the UiOSC/ZIS composite has good stability and recyclability. Experimental and characterization results show the formation of a type-II heterojunction between UiOSC and ZIS. This effectively suppresses the recombination of electrons-holes and promotes the carrier transfer, thus significantly improving the hydrogen production performance. This research further promotes the application of UiO-66-(SCH3)2 in the field of photocatalytic hydrogen production and provides a reference for the rational design of UiO-66-based composite photocatalysts.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Wenjing Shang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
5
|
Ran J, Chen L, Wang D, Talebian-Kiakalaieh A, Jiao Y, Adel Hamza M, Qu Y, Jing L, Davey K, Qiao SZ. Atomic-Level Regulated 2D ReSe 2 : A Universal Platform Boostin Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210164. [PMID: 36828483 DOI: 10.1002/adma.202210164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Indexed: 05/12/2023]
Abstract
Solar hydrogen (H2 ) generation via photocatalytic water splitting is practically promising, environmentally benign, and sustainably carbon neutral. It is important therefore to understand how to controllably engineer photocatalysts at the atomic level. In this work, atomic-level engineering of defected ReSe2 nanosheets (NSs) is reported to significantly boost photocatalytic H2 evolution on various semiconductor photocatalysts including TiO2 , CdS, ZnIn2 S4 , and C3 N4 . Advanced characterizations, such as atomic-resolution aberration-corrected scanning transmission electron microscopy (AC-STEM), synchrotron-based X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), transient-state surface photovoltage (SPV) spectroscopy, and transient-state photoluminescence (PL) spectroscopy, together with theoretical computations confirm that the strongly coupled ReSe2 /TiO2 interface and substantial atomic-level active sites of defected ReSe2 NSs result in the significantly raised activity of ReSe2 /TiO2 . This work not only for the first time realizes the atomic-level engineering of ReSe2 NSs as a versatile platform to significantly raise the activities on different photocatalysts, but, more importantly, underscores the immense importance of atomic-level synthesis and exploration on 2D materials for energy conversion and storage.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ling Chen
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Deyu Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Amin Talebian-Kiakalaieh
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Mahmoud Adel Hamza
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yang Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, China
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
6
|
Ma X, Cheng H. ReS 2 with unique trion behavior as a co-catalyst for enhanced sunlight hydrogen production. J Colloid Interface Sci 2023; 634:32-43. [PMID: 36528969 DOI: 10.1016/j.jcis.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The interfacial catalytic reaction plays a crucial role in determining hydrogen production efficiency of a photocatalyst. In this work, hollow spherical nano-shell composite (g-C3N4/CdS/ReS2) formed by graphitic carbon nitride (g-C3N4), cadmium sulfide (CdS), and rhenium disulfide (ReS2) was prepared for photocatalytic hydrogen production, with ReS2 introduced as a relatively inexpensive co-catalyst with excellent performance. It was found that two-electron catalytic reaction took place in this photocatalytic system due to the unique trion behavior of ReS2 co-catalyst, which greatly enhances the rate of photocatalytic hydrogen production. The tightly bound excitons in the ReS2 co-catalyst could easily capture the photogenerated electrons in the photocatalytic system to form trions, while g-C3N4 in the inner shell and CdS in the middle shell provided sufficient electrons for the formation of trions. The active edge sites of ReS2 also facilitated the generation and desorption of hydrogen, which creates conditions favoring two-electron catalytic reaction. In addition, oxidation and reduction reactions occurred inside and outside of the hollow spherical nano-shell, respectively, which effectively inhibits the recombination of photogenerated carriers. The unique trion behavior of ReS2 alters the interfacial catalytic reaction compared to the widely used platinum (Pt) co-catalyst in photocatalytic hydrogen production, which provides a new approach for enhancing the activity of photocatalytic systems.
Collapse
Affiliation(s)
- Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Wang N, Li Y, Wang L, Yu X. Photocatalytic Applications of ReS2-Based Heterostructures. Molecules 2023; 28:molecules28062627. [PMID: 36985599 PMCID: PMC10051642 DOI: 10.3390/molecules28062627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
ReS2-based heterostructures, which involve the coupling of a narrow band-gap semiconductor ReS2 with other wide band-gap semiconductors, have shown promising performance in energy conversion and environmental pollution protection in recent years. This review focuses on the preparation methods, encompassing hydrothermal, chemical vapor deposition, and exfoliation techniques, as well as achievements in correlated applications of ReS2-based heterostructures, including type-I, type-II heterostructures, and Z-scheme heterostructures for hydrogen evolution, reduction of CO2, and degradation of pollutants. We believe that this review provides an overview of the most recent advances to guide further research and development of ReS2-based heterostructures for photocatalysis.
Collapse
|
8
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Liu Z, Qiu L, Wen K, Cao B, Li P, Tang Y, Chen X, Kita H, Duo S. In situself-assembly fabrication of ultrathin sheet-like CuS modified g-C 3N 4heterojunction and its enhanced visible-light photocatalytic performance. NANOTECHNOLOGY 2022; 34:015713. [PMID: 36162239 DOI: 10.1088/1361-6528/ac94da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysts with heterojunction structure have been widely used for organic degradation. In this study, CuS/g-C3N4heterojunction was formed byin situself-assembly via a simply hydrothermal method. A series of characterizations were applied to analyzing the morphology, structure, optical properties and photo-induced electron transfer of the samples. The effect of CuS mass ratio in the CuS/g-C3N4composite on methyl blue (10 mg l-1) degradation under visible-light illumination was discussed. When CuS mass ratio was 60%, CuS/g-C3N4behaved the highest photocatalytic efficiency which is 17 times higher than that of pure g-C3N4, and the optimal heterojunction exhibited promising photocatalytic stability as well. The synthesized CuS/g-C3N4with intimate contact and promising photocatalytic performance provides important implications on analogous researches on g-C3N4-based heterojunctions for photocatalytic applications.
Collapse
Affiliation(s)
- Zheyuan Liu
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Lingfang Qiu
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Ke Wen
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Banpeng Cao
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Ping Li
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yi Tang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiangshu Chen
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Hidetoshi Kita
- Graduate School of Science and Technology for Innovation, Graduate School Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| | - Shuwang Duo
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| |
Collapse
|
10
|
Yang X, Shi Y, Xie K, Fang S, Zhang Y, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Approach to Synthesize Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022; 61:e202207816. [DOI: 10.1002/anie.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xuanyu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yatong Shi
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Kefeng Xie
- College of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Shaoming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Deng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
- School of Materials and Chemistry University of Shanghai for Science & Technology Shanghai 200093 P. R. China
| |
Collapse
|
11
|
Boosted Photocatalytic Hydrogen Production over Two-dimensional/Two-dimensional Ta3N5/ReS2 van der Waals Heterojunctions. J Colloid Interface Sci 2022; 629:455-466. [DOI: 10.1016/j.jcis.2022.08.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022]
|
12
|
Bai P, Wang P, Wu Y, Pang X, Song M, Du C, Su Y. Junction of Zn mIn 2S 3+m and bismuth vanadate as Z-scheme photocatalyst for enhanced hydrogen evolution activity: The role of interfacial interactions. J Colloid Interface Sci 2022; 628:488-499. [PMID: 36007414 DOI: 10.1016/j.jcis.2022.08.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/19/2022]
Abstract
A series of ZnmIn2S3+m photocatalysts were synthesized to show tunable band gap energy with the variation of Zn/S atomic ratio. The junction of ZnmIn2S3+m and BiVO4 led to intimate interfacial contacts. Both experimental and theoretical results implied that electrons flowed from ZnmIn2S3+m to BiVO4 at the ZnmIn2S3+m/BiVO4 interface to form built-in electric field due to the variation of Fermi level, which promised Z scheme charge transfer feature for improving separation of charge carriers for enhanced photocatalytic performance. A higher degree of charge transfer process occurred for Zn2In2S5/BiVO4 heterostructure promised stronger built-in electric field, higher charge separation efficiency and improved photocatalytic activity in comparison to ZnIn2S4/BiVO4 and Zn3In2S6/BiVO4 heterojunctions. The optimal hydrogen production rate of Zn2In2S5/BiVO4 photocatalyst is 8.42 mmol•g-1•h-1 with apparent quantum yield of 22.32 % at 435 nm, which is about 2.2 and 1.5 times higher than that of ZnIn2S4/BiVO4 and Zn3In2S6/BiVO4, respectively.
Collapse
Affiliation(s)
- Ping Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Peng Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yuhang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xin Pang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Meiting Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Wang H, Ma J, Chen Z, Yuan Y, Zhou B, Li W. Promoted photocarrier separation by dipole engineering in two-dimensional perovskite/C 2N van der Waals heterostructures. Phys Chem Chem Phys 2022; 24:17348-17360. [PMID: 35819077 DOI: 10.1039/d2cp01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the aggravation of environmental pollution and the energy crisis, it is urgent to develop and design environment-friendly and efficient photocatalysts for water splitting. van der Waals heterostructures composed of different two-dimensional materials offer an easily accessible way to combine properties of individual materials for applications. Herein, a novel Cs3Bi2I9/C2N heterostructure is proposed through first-principles calculations. The structural, electronic, and optical properties, as well as the charge transfer mechanism at the interface of Cs3Bi2I9/C2N are systematically investigated. Due to the difference between the work functions of Cs3Bi2I9 and C2N monolayers, when they are constructed into heterostructures, redistribution of charge occurs in the whole structure, and some of the charge transfer occurs at the interface due to the formation of an internal electric field. The band structure of Cs3Bi2I9/C2N has type-II band alignment, and the band edge position as well as the band-gap value of the heterostructure are suitable for visible light water splitting. The in-plane biaxial strain, interfacial spacing, and external electric field can effectively modulate the electronic structure and photocatalytic performance of the heterostructure. Under certain conditions, the heterostructure can be changed from type-II to type-I band alignment, accompanied by the transition from an indirect band-gap semiconductor to a direct band-gap semiconductor. Moreover, the intrinsic anion defect (I vacancy) at different positions, as donor defects, can introduce defect levels near the conduction band edge, which affects the transition of photogenerated carriers in these systems. Our findings provide a theoretical design for strategies to improve the performance of two-dimensional perovskites/C2N in photocatalytic and optoelectronic applications.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Ma
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujie Yuan
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Li
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
14
|
Yang X, Shi Y, Xie K, Fang S, Zhang YH, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Gives Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuanyu Yang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yatong Shi
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Kefeng Xie
- Lanzhou Jiaotong University School of Chemical and Biological Engineering CHINA
| | - Shaoming Fang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yong-Hui Zhang
- Zhengzhou University of Light Industry 5 Dongfeng Road zhengzhou CHINA
| | | |
Collapse
|
15
|
Wu B, Liu N, Lu L, Zhang R, Zhang R, Shi W, Cheng P. A MOF-derived hierarchical CoP@ZnIn 2S 4 photocatalyst for visible light-driven hydrogen evolution. Chem Commun (Camb) 2022; 58:6622-6625. [PMID: 35584400 DOI: 10.1039/d2cc01946a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical CoP@ZnIn2S4 photocatalyst was prepared via a MOF-templated strategy. Owing to the unique composition and morphology that can facilitate the separation of photoexcited carriers, enhance light absorption and provide high surface area, CoP@ZnIn2S4 exhibited a H2 evolution rate of 0.103 mmol h-1 and remained stable over 24 hours.
Collapse
Affiliation(s)
- Boyuan Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lele Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ruizhe Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Runhao Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
16
|
Guo C, Wu B, Ye S, Liu J, Deng X, Luo L, Li Q, Xiao X, Wang J, Liu J, Xia T, Jiang B. Enhancing the heterojunction component-interaction by in-situ hydrothermal growth toward photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 614:367-377. [DOI: 10.1016/j.jcis.2022.01.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
|
17
|
Han W, Wei Y, Wan J, Nakagawa N, Wang D. Hollow Multishell-Structured TiO 2/MAPbI 3 Composite Improves Charge Utilization for Visible-Light Photocatalytic Hydrogen Evolution. Inorg Chem 2022; 61:5397-5404. [PMID: 35312311 DOI: 10.1021/acs.inorgchem.2c00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Interfacial photogenerated charge separation and transport have demonstrated great influence on photocatalytic performance. Herein, the composite photocatalysts of methylammonium lead iodide perovskite (MAPbI3) in TiO2 with a hollow multishell structure (HoMS) are designed and synthesized. The results indicate that the heterogeneous interface within the MAPbI3/Pt/TiO2-HoMS can help enhance the separation of photogenerated charges. HoMSs assembled with multiple shells can not only support large surfaces available for building a heterogeneous interface and photocatalytic reactions but also improve the light absorption capability of photocatalysts. Besides, the thin shell structure can also reduce the transmission distance of carriers so as to hinder charge recombination and improve charge utilization. As a result, samples of MAPbI3/Pt/triple-shelled TiO2 hollow structure displayed a H2 yield of 6856.2 μmol h-1 g-1 under visible light, which is greatly better than that of bare MAPbI3 (268.6 μmol h-1 g-1).
Collapse
Affiliation(s)
- Wensheng Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nobuyoshi Nakagawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Cheng CQ, Feng Y, Shi ZZ, Zhou YL, Kang WJ, Li Z, Mao J, Shen GR, Dong CK, Liu H, Du XW. Highly Conjugated Graphitic Carbon Nitride Nanofoam for Photocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1471-1478. [PMID: 35042330 DOI: 10.1021/acs.langmuir.1c02716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.
Collapse
Affiliation(s)
- Chuan-Qi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yi Feng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zi-Zheng Shi
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yun-Long Zhou
- School of Chemistry and Materials, Longyan University, Longyan City, Fujian Province 364012, China
| | - Wen-Jing Kang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Li
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Mao
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gu-Rong Shen
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cun-Ku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hui Liu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Gao D, Xu J, Wang L, Zhu B, Yu H, Yu J. Optimizing Atomic Hydrogen Desorption of Sulfur-Rich NiS 1+ x Cocatalyst for Boosting Photocatalytic H 2 Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108475. [PMID: 34811811 DOI: 10.1002/adma.202108475] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Low-cost transition-metal chalcogenides (MSx ) are demonstrated to be potential candidate cocatalyst for photocatalytic H2 generation. However, their H2 -generation performance is limited by insufficient quantities of exposed sulfur (S) sites and their strong bonding with adsorbed hydrogen atoms (SHads ). To address these issues, an efficient coupling strategy of active-site-enriched regulation and electronic structure modification of active S sites is developed by rational design of core-shell Au@NiS1+ x nanostructured cocatalyst. In this case, the Au@NiS1+ x cocatalyst can be skillfully fabricated to synthesize the Au@NiS1+ x modified TiO2 (denoted as TiO2 /Au@NiS1+ x ) by a two-step route. Photocatalytic experiments exhibit that the resulting TiO2 /Au@NiS1+ x (1.7:1.3) displays a boosted H2 -generation rate of 9616 µmol h-1 g-1 with an apparent quantum efficiency of 46.0% at 365 nm, which is 2.9 and 1.7 times the rate over TiO2 /NiS1+ x and TiO2 /Au, respectively. In situ/ex situ XPS characterization and density functional theory calculations reveal that the free-electrons of Au can transfer to sulfur-enriched NiS1+ x to induce the generation of electron-enriched Sδ - active centers, which boosts the desorption of Hads for rapid hydrogen formation via weakening the strong SHads bonds. Hence, an electron-enriched Sδ - -mediated mechanism is proposed. This work delivers a universal strategy for simultaneously increasing the active site number and optimizing the binding strength between the active sites and hydrogen adsorbates.
Collapse
Affiliation(s)
- Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| |
Collapse
|