1
|
Antoni Czarnecki M, Warchoł J, Orzechowski K, Beć K, Huck CW. Soft confinement of water in aliphatic alcohols: MIR/NIR spectroscopic and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124851. [PMID: 39084017 DOI: 10.1016/j.saa.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Here, we present the first examination of the state of water under a soft confinement in eight aliphatic alcohols including cyclopentanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-decanol, 2-octanol and 3-octanol. Due to relatively large size of the aliphatic part, water has limited solubility in all studied alcohols. Water content in saturated solutions was determined by Karl Fischer titration and correlated with the spectroscopic data. This way, we determined the molar absorptivity of the ν2+ν3 combination mode. The effect of addition of water and temperature variation was monitored by ATR-IR and NIR spectroscopy. Analysis of the experimental results was guided by DFT calculations, which provided the structures, harmonic MIR spectra and binding energies of selected alcohol-water complexes. Our studies demonstrated that the state of water in alcohols is related to its solubility, which depends on structure of solvent molecules. The solubility of water in 1-alcohols decreases on increasing of the chain length, but for long chain alcohols this effect is less evident. More apparent solubility reduction appears in going from the primary to secondary alcohols. The effective shielding of the OH group in the linear alcohols is achieved when on both sides of the OH group are ethyl or longer substituents, while the shielding by methyl groups is less efficient. Water is much better soluble in the cyclic alcohols as compared with the linear ones due to better accessibility of the OH group. The soft confinement of water in aliphatic alcohols allows for flexible structural arrangements and interactions. Even at low water content, we did not observe free molecules of water. At these conditions, the molecules of water are singly or doubly bonded to the OH groups from the alcohol. Increasing solubility of water reduces the number of the free OH groups and leads to formation of water clusters. Obtained results allow concluding that in alcohols with sizable aliphatic part the molecules of water are confined in the vicinity of the OH groups.
Collapse
Affiliation(s)
| | - Justyna Warchoł
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Kazimierz Orzechowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Krzysztof Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
2
|
Zunzunegui-Bru E, Alfarano SR, Zueblin P, Vondracek H, Piccirilli F, Vaccari L, Assenza S, Mezzenga R. Universality in the Structure and Dynamics of Water under Lipidic Mesophase Soft Nanoconfinement. ACS NANO 2024. [PMID: 39088237 DOI: 10.1021/acsnano.4c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.
Collapse
Affiliation(s)
- Eva Zunzunegui-Bru
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Serena Rosa Alfarano
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Patrick Zueblin
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Hendrik Vondracek
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
- Istituto Innovazione e Ricerca Tecnologica (RIT), Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Salvatore Assenza
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Xia Q, Pan Y, Liu B, Zhang X, Li E, Shen T, Li S, Xu N, Ding J, Wang C, Vecitis CD, Gao G. Solar-driven abnormal evaporation of nanoconfined water. SCIENCE ADVANCES 2024; 10:eadj3760. [PMID: 38820164 PMCID: PMC11141626 DOI: 10.1126/sciadv.adj3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT10@AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m-2 hour-1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.
Collapse
Affiliation(s)
- Qiancheng Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Laboratoire de Physique des Solides Bât. 510, Université Paris Saclay, 91405 Orsay, France
| | - Bin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Enze Li
- Institute of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University, Taiyuan 030006, China
| | - Tao Shen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ning Xu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing 401121, China
| |
Collapse
|
4
|
Ishikawa M, Borges R, Mourão A, Ferreira LM, Lobo AO, Martinho H. Confined Water Dynamics in the Scaffolds of Polylactic Acid. ACS OMEGA 2024; 9:19796-19804. [PMID: 38737045 PMCID: PMC11079869 DOI: 10.1021/acsomega.3c08057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
Resorbable polylactic acid (PLA) ultrathin fibers have been applied as scaffolds for tissue engineering applications due to their micro- and nanoporous structure that favor cell adhesion, besides inducing cell proliferation and upregulating gene expression related to tissue regeneration. Incorporation of multiwalled carbon nanotubes into PLA fibers has been reported to increase the mechanical properties of the scaffold, making them even more suitable for tissue engineering applications. Ideally, scaffolds should be degraded simultaneously with tissue growth. Hydration and swelling are factors related to scaffold degradation. Hydration would negatively impact the mechanical properties since PLA shows hydrolytic degradation. Water absorption critically affects the catalysis and allowance of the hydrolysis reactions. Moreover, either mass transport and chemical reactions are influenced by confined water, which is an unexplored subject for PLA micro- and nanoporous fibers. Here, we probe and investigate confined water onto highly porous PLA microfibers containing few amounts of incorporated carbon nanotubes by Fourier transform infrared (FTIR) spectroscopy. A hydrostatic pressure was applied to the fibers to enhance the intermolecular interactions between water molecules and C=O groups from polyester bonds, which were evaluated over the wavenumber between 1600 and 2000 cm-1. The analysis of temperature dependence of FTIR spectra indicated the presence of confined water which is characterized by a non-Arrhenius to Arrhenius crossover at T0 = 190 K for 1716 and 1817 cm-1 carbonyl bands of PLA. These bands are sensitive to a hydrogen bond network of confined water. The relevance of our finding relies on the challenge detecting confined water in hydrophobic cavities as in the PLA one. To the best of our knowledge, we present the first report referring the presence of confined water in a hydrophobic scaffold as PLA for tissue engineering. Our findings can provide new opportunities to understand the role of confined water in tissue engineering applications. For instance, we argue that PLA degradation may be affected the most by confined water. PLA degradation involves hydrolytic and enzymatic degradation reactions, which can both be sensitive to changes in water properties.
Collapse
Affiliation(s)
- Mariana Ishikawa
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | - Roger Borges
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
- School
of Biomedical Engineering, Faculdade Israelita de Ciências
da Saúde Albert Einstein, Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 09280-560, Brazil
| | - André Mourão
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | | | - Anderson O. Lobo
- Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Department of Materials
Engineering, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
| | | |
Collapse
|
5
|
Gao Y, Chen Z, Zhang Y, Wen Y, Yu X, Shan B, Xu B, Chen R. Reorientation of Hydrogen Bonds Renders Unusual Enhancement in Thermal Transport of Water in Nanoconfined Environments. NANO LETTERS 2024; 24:5379-5386. [PMID: 38649277 DOI: 10.1021/acs.nanolett.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqiao Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yanwei Wen
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaotong Yu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin Shan
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng XC, Wang C. Tunable Surface Wettability via Terahertz Electrowave Controlled Vicinal Subnanoscale Water Layer. NANO LETTERS 2024; 24:3243-3248. [PMID: 38427592 DOI: 10.1021/acs.nanolett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junquan Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Chonghai Qi
- School of Physical and Intelligent Engineering, Jining University, Qufu 273155, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Zhang Y, Huang R, Iepure M, Merriman S, Min Y. Geocolloidal interactions and relaxation dynamics under nanoconfinement: Effects of salinity and particle concentration. J Colloid Interface Sci 2023; 656:200-213. [PMID: 37989053 DOI: 10.1016/j.jcis.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
HYPOTHESIS Energy-related contaminants are frequently associated with geocolloids that translocate in underground fissures with dimensions comparable with geocolloids. To assess the transport and impact of energy-related contaminants in geological systems, fundamental understandings of interfacial behaviors of nanoparticles under confinement is imperative. We hypothesize that the dynamic properties of geocolloids, as well as their dependence on aqueous medium conditions would deviate from bulk behaviors under nanoconfinement. EXPERIMENTS Force profiles and rheological properties of 50 nm silica nanoparticles in aqueous media confined between mica surfaces as a function of surface separation, particle concentrations, and salinity were measured utilizing the surface forces apparatus. FINDINGS Force profiles revealed the critical surface separation for nonlinear rheological behaviors coincides with the onset of exponential repulsion between mica surfaces. When salts were absent, the normal forces and viscosity values of colloidal suspensions resembled pure water. In contrast, with salts, the force profiles and corresponding critical length scales were found to be highly sensitive to the particle concentration and the degree of confinement. A Newtonian to shear-thinning transition was captured with increasing degrees of confinement. Our results show that the interplay among confinement, particle, and ionic concentrations can alter the interparticle forces and rheological responses of true nanosized-colloidal suspensions and thus their transport behaviors under nanoconfinement for the first time.
Collapse
Affiliation(s)
- Yuanzhong Zhang
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA
| | - Stephen Merriman
- School of Polymer Science and Polymer Engineering, University of Akron, 44325 OH, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521 CA, USA; Material Science and Engineering Program, University of California, Riverside, 92521 CA, USA.
| |
Collapse
|
8
|
Shi Y, Mu H, You J, Han C, Cheng H, Wang J, Hu H, Ren H. Confined water-encapsulated activated carbon for capturing short-chain perfluoroalkyl and polyfluoroalkyl substances from drinking water. Proc Natl Acad Sci U S A 2023; 120:e2219179120. [PMID: 37364117 PMCID: PMC10318985 DOI: 10.1073/pnas.2219179120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The global ecological crisis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water has gradually shifted from long-chain to short-chain PFASs; however, the widespread established PFAS adsorption technology cannot cope with the impact of such hydrophilic pollutants given the inherent defects of solid-liquid mass transfer. Herein, we describe a reagent-free and low-cost strategy to reduce the energy state of short-chain PFASs in hydrophobic nanopores by employing an in situ constructed confined water structure in activated carbon (AC). Through direct (driving force) and indirect (assisted slip) effects, the confined water introduced a dual-drive mode in the confined water-encapsulated activated carbon (CW-AC) and completely eliminated the mass transfer barrier (3.27 to 5.66 kcal/mol), which caused the CW-AC to exhibit the highest adsorption capacity for various short-chain PFASs (C-F number: 3-6) among parent AC and other adsorbents reported. Meanwhile, benefiting from the chain length- and functional group-dependent confined water-binding pattern, the affinity of the CW-AC surpassed the traditional hydrophobicity dominance and shifted toward hydrophilic short-chain PFASs that easily escaped treatment. Importantly, the ability of CW-AC functionality to directly transfer to existing adsorption devices was verified, which could treat 21,000 bed volumes of environment-related high-load (~350 ng/L short-chain PFAS each) real drinking water to below the World Health Organization's standard. Overall, our results provide a green and cost-effective in situ upgrade scheme for existing adsorption devices to address the short-chain PFAS crisis.
Collapse
Affiliation(s)
- Yuanji Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Huazai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| |
Collapse
|
9
|
Weng G, Wang B, Ye Y, Zhang Q, Yan Y, Chen C, Ding CF. Application of Microscopic Highly Hydrophilic Silica-Based Nanocomposites with High Surface Exposure in the Efficient Identification of Intact N-Glycopeptides. Anal Chem 2023; 95:7735-7742. [PMID: 37146275 DOI: 10.1021/acs.analchem.3c00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycosylation of proteins regulates the life activities of organisms, while abnormalities of glycosylation sites and glycan structures occur in various serious diseases such as cancer. A separation and enrichment procedure is necessary to realize the analysis of the glycoproteins/peptides by mass spectrometry, for which the surface hydrophilicity of the material is an important factor for the separation and enrichment performance. In the present work, under the premise of an obvious increase of the surface silicon exposure (79.6%), the amount of surface polar silanol is remarkably generated accompanying the introduction of the active amino groups on the surface of silica. The microscopic hydrophilicity, which is determined with water physical-adsorption measurements and can directly reflect the interaction of water molecules and the intrinsic surface of the material, maximally increases by 44%. This microscopically highly hydrophilic material shows excellent enrichment ability for glycopeptides, such as extremely low detection limits (0.01 fmol μL-1), remarkable selectivity (1:8000), and size exclusion effects (1:8000). A total of 677 quantifiable intact N-glycopeptides were identified from the serum of patients with cervical cancer, and the glycosylation site and glycan structure were analyzed in depth, indicating that this novel material can show a broad practical application in cervical cancer diagnosis.
Collapse
Affiliation(s)
- Guoying Weng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yicheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chen Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
10
|
Druchok M, Krasnov V, Krokhmalskii T, Cardoso E Bufalo T, Martins de Souza S, Rojas O, Derzhko O. Toward a quasiphase transition in the single-file chain of water molecules: Simple lattice model. J Chem Phys 2023; 158:104304. [PMID: 36922143 DOI: 10.1063/5.0133720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Recently, Ma et al. [Phys. Rev. Lett. 118, 027402 (2017)] have suggested that water molecules encapsulated in (6,5) single-wall carbon nanotube experience a temperature-induced quasiphase transition around 150 K interpreted as changes in the water dipoles orientation. We discuss further this temperature-driven quasiphase transition performing quantum chemical calculations and molecular dynamics simulations and, most importantly, suggesting a simple lattice model to reproduce the properties of the one-dimensional confined finite arrays of water molecules. The lattice model takes into account not only the short-range and long-range interactions but also the rotations in a narrow tube, and both ingredients provide an explanation for a temperature-driven orientational ordering of the water molecules, which persists within a relatively wide temperature range.
Collapse
Affiliation(s)
- Maksym Druchok
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Svientsitskii Street 1, 79011 L'viv, Ukraine
| | - Volodymyr Krasnov
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Svientsitskii Street 1, 79011 L'viv, Ukraine
| | - Taras Krokhmalskii
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Svientsitskii Street 1, 79011 L'viv, Ukraine
| | | | - Sergio Martins de Souza
- Departamento de Fisica, Universidade Federal de Lavras, CP 3037, 37200-000 Lavras-MG, Brazil
| | - Onofre Rojas
- Departamento de Fisica, Universidade Federal de Lavras, CP 3037, 37200-000 Lavras-MG, Brazil
| | - Oleg Derzhko
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Svientsitskii Street 1, 79011 L'viv, Ukraine
| |
Collapse
|
11
|
Voci S, Clarke TB, Dick JE. Abiotic microcompartments form when neighbouring droplets fuse: an electrochemiluminescence investigation. Chem Sci 2023; 14:2336-2341. [PMID: 36873831 PMCID: PMC9977408 DOI: 10.1039/d2sc06553c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Many studies have shown chemistry proceeds differently in small volumes compared to bulk phases. However, few studies exist elucidating spontaneous means by which small volumes can form in Nature. Such studies are critical in understanding the formation of life in microcompartments. In this study, we track in real-time the coalescence of two or more water microdroplets adsorbed on an electrified surface in a 1,2-dichloroethane continuous phase by electrogenerated chemiluminescence (ECL) imaging, uncovering the spontaneous generation of multiple emulsions inside the resulting water droplets. During the fusion of adsorbed water droplets with each other on the electrode surface, volumes of organic and water phases are entrapped in between and detected respectively as ECL not-emitting and emitting regions. The diameter of those confined environments inside the water droplets can be less than a micrometer, as described by scanning electron microscopy data. This study adds a new mechanism for the generation of micro- and nano-emulsions and provides insight into confinement techniques under abiotic conditions as well as new potential strategies in microfluidic devices.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Thomas B Clarke
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA .,Elmore Family School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
12
|
Fang F, Fu S, Lin J, Zhu J, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Unique Behavior of Water Molecules Confined in the Heterojunction between One- and Two-Dimensional Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7300-7311. [PMID: 35635722 DOI: 10.1021/acs.langmuir.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the increasing importance of nanoconfined water in various heterostructures, it is quite essential to clarify the influence of nanoconfinement on the unique properties of water molecules in the pivotal heterojunction. In this work, we reported a series of classical molecular dynamics (MD) simulations to explore nanoconfined water in the subnanometer-sized and nanometer-sized heterostructures by adjusting one-dimensional (1-D) carbon nanotubes with different diameters and two-dimensional (2-D) graphene sheets with different interlayer distances. Our simulation results demonstrated that water molecules in the 1-D/2-D heterojunction show an obvious structural rearrangement associated with the remarkable breaking and formation of hydrogen bonds (HBs), and such rearrangements in the subnanometer-sized systems are much more pronounced than those in the nanometer-sized ones. When water molecules in the 1-D/2-D heterojunctions migrate from 2-D to 1-D confinements, the ordered multi-layer structure in the 2-D confinement are completely destroyed and then transform into different circular HB networks near the nanotube orifice for better connecting to the single-file or helical HB network in the 1-D nanotubes. Furthermore, water molecules in the 1-D/2-D heterojunctions can form stronger HBs with those water molecules further away from the 1-D confinement, leading to an asymmetrical orientational distribution near the orifice. More importantly, our comparison results revealed that the 1-D confinement plays a more important role than the 2-D confinement in determining both the structures and dynamics of water molecules in the 1-D/2-D heterojunction.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Shan Fu
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
13
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
14
|
Shirai J, Yoshida K, Koreeda H, Kitamori T, Yamaguchi T, Mawatari K. Water structure in 100 nm nanochannels revealed by nano X-ray diffractometry and Raman spectroscopy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zheng L, Liu Z, Zhang Q, Li S, Huang J, Zhang L, Zan B, Tyagi M, Cheng H, Zuo T, Sakai VG, Yamada T, Yang C, Tan P, Jiang F, Chen H, Zhuang W, Hong L. Universal dynamical onset in water at distinct material interfaces. Chem Sci 2022; 13:4341-4351. [PMID: 35509458 PMCID: PMC9006901 DOI: 10.1039/d1sc04650k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Interfacial water remains liquid and mobile much below 0 °C, imparting flexibility to the encapsulated materials to ensure their diverse functions at subzero temperatures. However, a united picture that can describe the dynamical differences of interfacial water on different materials and its role in imparting system-specific flexibility to distinct materials is lacking. By combining neutron spectroscopy and isotope labeling, we explored the dynamics of water and the underlying substrates independently below 0 °C across a broad range of materials. Surprisingly, while the function-related anharmonic dynamical onset in the materials exhibits diverse activation temperatures, the surface water presents a universal onset at a common temperature. Further analysis of the neutron experiment and simulation results revealed that the universal onset of water results from an intrinsic surface-independent relaxation: switching of hydrogen bonds between neighboring water molecules with a common energy barrier of ∼35 kJ mol−1. We demonstrated that the dynamical onset of interfacial water is an intrinsic property of water itself, resulting from a surface independent relaxation process in water with an approximately universal energy barrier of ∼35 kJ mol−1.![]()
Collapse
Affiliation(s)
- Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Zhuo Liu
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043, China
| | - Song Li
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Zan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - He Cheng
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Taisen Zuo
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Chenxing Yang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Jiang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
16
|
Wu X, Chen Y, Li W, Chen C, Zhang J, Wang J. Heterostructured membranes with selective solvent-capture coatings and low-resistance 2D nanochannels for efficient mixed solvent separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Guo C, Qin H, Zhu Y, Lü Y. Weakly Anisotropic Dielectric Properties of Water Droplets at the Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13059-13066. [PMID: 34709837 DOI: 10.1021/acs.langmuir.1c02207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The slab-confined water at the nanoscale exhibits anomalous dielectric properties compared to bulk water, for example, significantly low dielectric constant. In this work, we study the dielectric properties of nanoscale water droplets at room temperature using molecular dynamics simulations. We find that the nanoscale water droplets feature weakly anisotropic dielectric constant: the radial component of dielectric constants is distinctly smaller than the tangential component although they both decrease with reducing droplet size in a similar way. Such dielectric behavior is closely related to the orientational preference of water molecules near the convex surface. The molecular dipole prefers to slightly orientate toward the interior of droplets in contrast to the out-of-plane preference for free-standing water films and slab-confined water, which suppresses the fluctuation of dipole moments in the radial direction. Meanwhile, it facilitates the formation of the open hydrogen-bond network in the surface layer and ultimately leads to the relatively weak suppression of tangential fluctuations. The differential suppression is responsible for the anisotropic dielectric constant of water droplets. This anisotropic characteristic is also found in dielectric relaxation: both the radial and the tangential relaxation are consistently slowed down upon approaching surface but the latter is universally slower.
Collapse
Affiliation(s)
- Chenchen Guo
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hairong Qin
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yong Zhu
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, P. R. China
| | - Yongjun Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|