1
|
Jin YK, Xu K, Ren BY, Shao J, Ou CJ, Xie LH. A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics. Adv Healthc Mater 2025:e2404783. [PMID: 39838814 DOI: 10.1002/adhm.202404783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration. SFX-IC-based nanoparticles (NPs) display a high molar extinction coefficient of 7.05 × 104 m‒1 cm-1 at 645 nm due to strong intramolecular charge-transfer characteristics. As expected, the as-prepared NPs show strong NIR-II emission with a fluorescence quantum yield of 1.1%, thanks to the spiro-configuration that suppressing excessively intermolecular π-π stacking. Furthermore, SFX-IC NPs not only efficiently generate 1O2 and O∙- 2 under 660 nm laser irradiation, but also possess good photothermal effect with photothermal conversion efficiency of 47.14%. Consequently, SFX-IC NPs can be served as versatile phototheranostic agents for NIR-II fluorescence/photoacoustic imaging-guided phototherapy, manifesting that the spiro-functionalized strategy is a powerful tool to construct efficient NIR-II emitting PSs.
Collapse
Affiliation(s)
- Yu-Kun Jin
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Kang Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Bao-Yi Ren
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Chang-Jin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ling-Hai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| |
Collapse
|
2
|
Chen S, Li J, Yin W, Li W, He X, Liang H, Mahmood Z, Huo Y, Zhao Z, Ji S. Phototherapeutic applications of benzophenone-containing NIR-emitting photosensitizers based on different receptor modulations. J Mater Chem B 2024; 12:9533-9544. [PMID: 39314202 DOI: 10.1039/d4tb01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Photodynamic therapy (PDT) plays a crucial role in treating cancer and major infectious diseases. However, the hypoxic microenvironment and deep-seated tumors often compromise the effectiveness of photosensitizers (PSs). PSs primarily generate type-II reactive oxygen species (ROS), which are limited under hypoxic conditions. Pyridinium salts frequently exhibit critical dark toxicity in vitro. Moreover, PDT alone often fails to achieve optimal anti-tumor effects compared to its combined application with photothermal therapy (PTT). To address these issues, we replaced pyridinium with quinolinium, significantly reducing dark toxicity. Additionally, the incorporation of benzophenone enhanced ROS generation, achieving a synergistic effect of type-I and type-II PDT. Fine-tuning the conjugated structure enhanced the donor-acceptor (D-A) intensity, while the stretching vibrations of carbon-carbon double bonds and carbon-nitrogen triple bonds red-shifted the excitation wavelength to the near-infrared (NIR) region and improved the photothermal conversion efficiency (PCE). This strategy provides a molecular design approach for achieving synergy between PDT and PTT. The synthesized four NIR-emitting aggregation-induced emission quinolinium salts exhibited mitochondrial targeting ability and low dark toxicity. Among them, FCN-TPAQ-BP showed excellent ROS generation capability, a PCE of 39.2%, good biocompatibility, and low dark toxicity, making it an ideal candidate for enhancing PDT's antitumor efficacy.
Collapse
Affiliation(s)
- Shuge Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zarfar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Shaomin Ji
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
4
|
Xu R, Shen Q, Zhang P, Wang Z, Xu Y, Meng L, Dang D. Less is More: Asymmetric D-A Type Agent to Achieve Dynamic Self-Assembled Nanoaggregates for Long-Acting Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402434. [PMID: 38684233 DOI: 10.1002/adma.202402434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Indexed: 05/02/2024]
Abstract
To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Qifei Shen
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Xia J, Quan H, Huang Y, Zhang Z, Zhang Y, Lu B. Side Chain Programming Synchronously Enhances the Photothermal Conversion Efficiency and Photodynamic Activity of A-D-A Photosensitizers. ACS Macro Lett 2024; 13:489-494. [PMID: 38607650 DOI: 10.1021/acsmacrolett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuehua Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
6
|
Guo W, Gu P, Li Y, Zhang C, Wang D, Zhang Y, Hao X, Liu G, Zhou S. Synthesis of tetraphenylethylene-based small molecular sensor for the selective "turn-on" detection of pyrophosphoric acid in the aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123990. [PMID: 38340450 DOI: 10.1016/j.saa.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics. TPE-4B was explicitly developed for the selective and sensitive fluorescence detection of PPi in aqueous solutions, showing a fluorescence "turn-on" response, and the detection limit was 65 nM. The four chelate pyridinium moieties of TPE-4B exhibited robust electrostatic interactions and binding capacity towards PPi, leading to the formation of aggregations, which was confirmed by zeta potential, dynamic light scattering, and scanning electron microscopy. Compared with free TPE-4B in the aqueous solution, the zeta potential of aggregations decreased from 20.7 to 4.2 mV, the average diameter increased from 155 to 403 nm, and the morphology transformed from porous nanostructures into a block-like format. Leveraging these properties, TPE-4B is a promising candidate for a "turn-on" fluorescence sensor designed to detect PPi in the aqueous solution.
Collapse
Affiliation(s)
- Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Lu B, Xia J, Quan H, Huang Y, Zhang Z, Zhan X. End Group Engineering for Constructing A-D-A Fused-Ring Photosensitizers with Balanced Phototheranostics Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307664. [PMID: 37972254 DOI: 10.1002/smll.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Zhu N, Jiang Y, Wu W. Multifunctional agents based on 3-dicycanovinylindan-1-one acceptor: Molecular design and phototheranostic application. LUMINESCENCE 2024; 39:e4708. [PMID: 38504612 DOI: 10.1002/bio.4708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered considerable attention in recent years, owing to its precise spatiotemporal accuracy with minimal side effects. Recent research reveals that the combination of PDT and PTT exhibits a remarkable anti-tumor efficacy compared to PDT or PTT alone, which has put forward the new requirements of multifunctional phototherapy agents with both high photosensitization and photothermal conversion efficiencies. Among the newly developed multifunctional agents, the ones with one or two 3-dicycanovinylindan-1-one (IC) moieties as the acceptors attract much more attention, due to their long-wavelength excitation and emission, as well as high phototherapy efficacies. Therefore, in this review, the latest advancement of multifunctional agents based on IC acceptor is summarized. Especially, we focus on the structure-property relationships of the agents, as well as their biomedical application in anti-tumor therapy or image-guided therapy. Our perspective on the further future development of this field is also discussed to conclude.
Collapse
Affiliation(s)
- Najia Zhu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, P. R. China
| | - Yajing Jiang
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, P. R. China
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
9
|
Wan F, Wang H, Gu Y, Fan G, Hou S, Yu J, Wang M, He F, Tian L. Bromine Substitution Improves the Photothermal Performance of π-Conjugated Phototheranostic Molecules. Chemistry 2024; 30:e202303502. [PMID: 37915302 DOI: 10.1002/chem.202303502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
NIR-II fluorescence imaging-guided photothermal therapy (PTT) has been widely investigated due to its great application potential in tumor theranostics. PTT is an effective and non-invasive tumor treatment method that can adapt to tumor hypoxia; nevertheless, simple and effective strategies are still desired to develop new materials with excellent PTT properties to meet clinical requirements. In this work, we developed a bromine-substitution strategy to enhance the PTT of A-D-A'-D-A π-conjugated molecules. The experimental results reveal that bromine substitution can notably enhance the absorptivity (ϵ) and photothermal conversion efficiency (PCE) of the π-conjugated molecules, resulting in the brominated molecules generating two times more heat (ϵ808 nm ×PCE) than their unsubstituted counterpart. We disclose that the enhanced photothermal properties of bromine-substituted π-conjugated molecules are a combined outcome of the heavy-atom effect, enhanced ICT effect, and more intense bromine-mediate intermolecular π-π stacking. Finally, the NIR-II tumor imaging capability and efficient PTT tumor ablation of the brominated π-conjugated materials demonstrate that bromine substitution is a promising strategy for developing future high-performance NIR-II imaging-guided PTT agents.
Collapse
Affiliation(s)
- Feiyan Wan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Huan Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Ying Gu
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Guilin Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mengying Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Feng He
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
10
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
11
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
12
|
Lu B, Huang Y, Quan H, Xia J, Wang J, Ding Y, Wang Y, Yao Y. Mitochondria-Targeting Multimodal Phototheranostics Based on Triphenylphosphonium Cation Modified Amphiphilic Pillararenes and A-D-A Fused-Ring Photosensitizers. ACS Macro Lett 2023; 12:1365-1371. [PMID: 37737579 DOI: 10.1021/acsmacrolett.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Tumor-targeting phototheranostics has gradually developed as a powerful tool for the precise diagnosis and treatment of cancer. However, the designs of tumor-targeting phototheranostics agents with excellent multimodal phototherapy and fluorescence imaging (FLI) capability, as well as very few components, are still scarce and challenging for cancer treatment. Herein, a mitochondria-targeting multimodal phototheranostics system has been constructed by combining a designed amphiphilic pillararene WP5-2PEG-2TPP and the A-D-A fused-ring photosensitizer F8CA5. WP5-2PEG-2TPP is constructed by attaching the triphenylphosphonium cations to our previously reported dual PEG-functionalized amphiphilic pillararene, which can self-assemble into regular spherical nanocarriers with outstanding mitochondria targeting and water solubility. The A-D-A photosensitizer F8CA5 containing two methyl cyanoacetate group modified end groups displays superior photothermal conversion ability and dual type I/II photodynamic activity as well as strong NIR fluorescence emission. Through their strong union, multifunctional mitochondria-targeting phototheranostics agent F8CA5 NPs were obtained to be applied into FLI-guided synergistic photothermal and type I/II photodynamic therapy. As a result, F8CA5 NPs show good mitochondria-targeting and phototherapy effects in various tumor cells. Not only that, they can combat tumor hypoxia, which hinders the efficacy of photodynamic therapy. Therefore, this work provides a creative ideal for the construction of multifunctional tumor-targeting phototheranostic agents with excellent performance.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jiacheng Xia
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
13
|
Guo T, Lin Y, Pan D, Zhang X, Zhu W, Cai XM, Huang G, Wang H, Xu D, Kühn FE, Zhang B, Zhang T. Towards bioresource-based aggregation-induced emission luminogens from lignin β-O-4 motifs as renewable resources. Nat Commun 2023; 14:6076. [PMID: 37770462 PMCID: PMC10539282 DOI: 10.1038/s41467-023-41681-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic β-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin β-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin β-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin β-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.
Collapse
Affiliation(s)
- Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenqing Zhu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China.
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748, Garching bei München, Germany
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
14
|
Shen Z, Zhu W, Huang Y, Zhang J, Wu Y, Pan Y, Yang G, Wang D, Li Y, Tang BZ. Visual Multifunctional Aggregation-Induced Emission-Based Bacterial Cellulose for Killing of Multidrug-Resistant Bacteria. Adv Healthc Mater 2023; 12:e2300045. [PMID: 37042250 DOI: 10.1002/adhm.202300045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Multidrug-resistant (MDR) bacteria-related wound infections are a thorny issue. It is urgent to develop new antibacterial wound dressings that can not only prevent wounds from MDR bacteria infection but also promote wound healing. Herein, an aggregation-induced emission (AIE) molecule BITT-composited bacterial cellulose (BC) is presented as wound dressings. BC-BITT composites have good transparency, making it easy to monitor the wound healing process through the composite membrane. The BC-BITT composites retain the advantages of biocompatible BC, and display photodynamic and photothermal synergistic antibacterial effects under irradiation of a 660 nm laser. Furthermore, the BC-BITT composites show excellent wound healing performance in a mouse full-thickness skin wound model infected by MDR bacteria, simultaneously with negligible toxicity. This work paves a way for treating clinically troublesome wound infections.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing and Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen, Guangdong, 518055, China
| | - Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
15
|
Deng K, Yu Y, Zhao Y, Li J, Li K, Zhao H, Wu M, Huang S. Tumor-targeted AIE polymeric micelles mediated immunogenic sonodynamic therapy inhibits cancer growth and metastasis. NANOSCALE 2023; 15:8006-8018. [PMID: 37067275 DOI: 10.1039/d3nr00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) exhibit potent sonosensitivity in nanocarriers compared with conventional organic sonosensitizers owing to the strong fluorescence emission in the aggregated state. However, the premature drug leakage and ineffective tumor targeting of current AIE nanosonosensitizers critically restrict their clinical applications. Here, an AIEgen-based sonosensitizer (AIE/Biotin-M) with excellent sonosensitivity was developed by assembling salicylaldazine-based amphiphilic polymers (AIE-1) and 4T1 tumor-targeting amphiphilic polymers (DSPE-PEG-Biotin) for the effective delivery of salicylaldazine to 4T1 tumor tissues, aiming to mediate immunogenic SDT. In vitro, AIE/Biotin-M were highly stable and generated plentiful singlet oxygen (1O2) under ultrasound (US) irradiation. After AIE/Biotin-M targeted accumulation in the tumor, upon US irradiation, the generation of 1O2 not only led to cancer cell death, but also elicited a systemically immune response by causing the immunogenic cell death (ICD) of cancer cells. In addition to mediating SDT, AIE/Biotin-M could chelate and reduce Fe3+, Cu2+ and Zn2+ by salicylaldazine for inhibiting neovascularization in tumor tissues. Ultimately, AIE/Biotin-M systemically inhibited tumor growth and metastasis upon US irradiation. This study presents a facile approach to the development of AIE nanosonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiami Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kunheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Hongyang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Shiwen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
16
|
Li M, Li Z, Yu D, Wang M, Wang D, Wang B. Quinoid Conjugated Polymer Nanoparticles with NIR-II Absorption Peak Toward Efficient Photothermal Therapy. Chemistry 2023; 29:e202202930. [PMID: 36484147 DOI: 10.1002/chem.202202930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Recently, extensive efforts have been devoted to the development of the second near-infrared bio-window (NIR-II, 1000-1700 nm) theranostic agents owing to the excellent tissue-penetration capability of NIR-II light. The exploration of organic NIR-II photothermal therapy materials, especially those with absorption peak over 1000 nm, is an appealing yet significantly challenging task. Herein, we have designed conjugated polymer nanoparticles (PIS NPs) with NIR-II absorption peak at 1026 nm through a combined strategy of introducing quinoid donor-acceptor (D-A) structures, constructing intramolecular "conformational locks" and extending the conjugation area to narrow the band gap. Irradiated at 1064 nm, PIS NPs showed remarkable photothermal conversion performance for efficient photothermal ablation of tumor cells in vitro and in vivo. This study provides useful insights into the rational design of organic NIR-II photothermal agents based on multiple strategies.
Collapse
Affiliation(s)
- Meng Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Zheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Danni Yu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Ming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
17
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
19
|
Yu J, Jiang G, Wang J. In Vivo Fluorescence Imaging-Guided Development of Near-Infrared AIEgens. Chem Asian J 2023; 18:e202201251. [PMID: 36637344 DOI: 10.1002/asia.202201251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
In vivo fluorescence imaging has received extensive attention due to its distinguished advantages of excellent biosafety, high sensitivity, dual temporal-spatial resolution, real-time monitoring ability, and non-invasiveness. Aggregation-induced emission luminogens (AIEgens) with near-infrared (NIR) absorption and emission wavelengths are ideal candidate for in vivo fluorescence imaging for their large Stokes shift, high brightness and superior photostability. NIR emissive AIEgens provide deep tissue penetration depth as well as low interference from tissue autofluorescence. Here in this review, we summarize the molecular engineering strategies for constructing NIR AIEgens with high performances, including extending π-conjugation system and strengthen donor (D)-acceptor (A) interactions. Then the encapsulation strategies for increasing water solubility and biocompatibility of these NIR AIEgens are highlighted. Finally, the challenges and prospect of fabricating NIR AIEgens for in vivo fluorescence imaging are also discussed. We hope this review would provide some guidelines for further exploration of new NIR AIEgens.
Collapse
Affiliation(s)
- Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
20
|
Li C, Jiang G, Yu J, Ji W, Liu L, Zhang P, Du J, Zhan C, Wang J, Tang BZ. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208229. [PMID: 36300808 DOI: 10.1002/adma.202208229] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Chuanlang Zhan
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
21
|
Guan X, Ding Y, Lai S, Yang X, Wei J, Zhang J, Zhang L, Wang K, Tong J, Li C. Nonconjugated fluorescent polymer nanoparticles by self-assembly of PIMA-g-β-CD for live-cell long-term tracking. Carbohydr Polym 2022; 291:119633. [DOI: 10.1016/j.carbpol.2022.119633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
|
22
|
Xing X, Yang K, Li B, Tan S, Yi J, Li X, Pang E, Wang B, Song X, Lan M. Boron Dipyrromethene-Based Phototheranostics for Near Infrared Fluorescent and Photoacoustic Imaging-Guided Synchronous Photodynamic and Photothermal Therapy of Cancer. J Phys Chem Lett 2022; 13:7939-7946. [PMID: 35980815 DOI: 10.1021/acs.jpclett.2c02122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photochemical properties of phototheranostics, especially the absorption, fluorescence, singlet oxygen (1O2) generation, and photothermal conversion efficiency, is a hot research topic. Here, we designed and synthesized four boron dipyrromethene (BODIPY) derivatives with high absorption coefficients and intense fluorescence in the near-infrared (NIR) region. The substituted electron-donating group significantly improved 1O2 generation and fluorescence of BODIPYs, whereas the electron-withdrawing group boosts photothermal conversion. These hydrophobic BODIPYs were further coated with DSPE-PEG-2000 to form water dispersible nanoparticles (NPs). Among these BODIPY NPs, the B-OMe-NPs with methoxyl substituted at the meso-position showed the highest 1O2 generation, a photothermal conversion efficiency of 66.5%, and an NIR fluorescence peak at 809 nm. In vitro and in vivo experiments demonstrated that B-OMe-NPs might be used for NIR fluorescent and photoacoustic imaging-guided photodynamic and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Xuejian Xing
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Baoling Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Siyi Tan
- Huazhi Medical Laboratory Co., Ltd., 618 Heping Road, Changsha 410125, P.R. China
| | - Jianing Yi
- Surgical Department of Breast and Thyroid Gland, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Xiangcao Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Benhua Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
23
|
Lu B, Zhang Z, Huang Y, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y. A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chem Commun (Camb) 2022; 58:10353-10356. [PMID: 36004760 DOI: 10.1039/d2cc03248a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current work, we synthesized an A-D-A smallmolecule photosensitizer, denoted as DPTTIC, and a dual PEG-functionalized pillararene, denoted as WP5-8C-2PEG, and used them to construct novel DPTTIC nanoparticles (NPs) displaying NIR II absorption. Under 980 nm-wavelength laser irradiation, DPTTIC NPs performed well in mild-temperature photothermal and type I & II photodynamic anti-tumor therapy.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
24
|
Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Li D, Chen X, Wang D, Wu H, Wen H, Wang L, Jin Q, Wang D, Ji J, Tang BZ. Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials 2022; 283:121476. [DOI: 10.1016/j.biomaterials.2022.121476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022]
|
26
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
27
|
Chen Z, Cao X, Chen S, Yu S, Lin Y, Lin S, Wang Z. Design, Synthesis and Application of Trisubstituted Olefinic Aggregation-Induced Emission Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Liu S, Han J, Wang W, Chang Y, Wang R, Wang Z, Li G, Zhu D, Bryce MR. AIE-active Ir( iii) complexes functionalised with a cationic Schiff base ligand: synthesis, photophysical properties and applications in photodynamic therapy. Dalton Trans 2022; 51:16119-16125. [DOI: 10.1039/d2dt02960j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two AIE-active Ir(iii) cationic complexes containing Schiff base ligands were synthesised. Ir-2-N+ NPs are shown to be good PSs in vitro for PDT.
Collapse
Affiliation(s)
- Shengnan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Jiahong Han
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Weijin Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin Province 130033, China
| | - Runlin Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Ziwei Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province 130117, P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Martin R. Bryce
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|