1
|
Xu Y, Liu X, Jiang M, Chi B, Lu Y, Guo J, Wang Z, Cui S. Achieving high selectivity and activity of CO 2 electroreduction to formate by in-situ synthesis of single atom Pb doped Cu catalysts. J Colloid Interface Sci 2024; 665:365-375. [PMID: 38537585 DOI: 10.1016/j.jcis.2024.03.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Exploring highly selective and stable electrocatalysts is of great significance for the electrochemical conversion of CO2 into fuel. Herein, a three-dimensional (3D) nanostructure catalyst was developed by doping Pb single-atom (PbSA) in-situ on carbon paper (PbSA100-Cu/CP) through a low-energy and economical method. The designed catalyst exhibited abundant active sites and was beneficial to CO2 adsorption, activation, and subsequent conversion to fuel. Interestingly, PbSA100-Cu/CP showed a prominent Faraday efficiency (FE) of 97 % at -0.9 V versus reversible hydrogen electrode (vs. RHE) and a high partial current density of 27.9 mA·cm-2 for formate. Also, the catalyst remained significantly stable for 60 h during the durability test. The reaction mechanism was investigated by density functional theory (DFT), demonstrating that the doping PbSA induced the electrons redistribution, promoted the formate generation, reduced the rate-determining step (RDS) energy barrier, and inhibited the hydrogen evolution reaction. The study aims to provide a new strategy for developing of single-atom catalysts with high selectivity and stability, which will help reduce environmental pressure and alleviate energy problems.
Collapse
Affiliation(s)
- Yurui Xu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China; Institute of Disaster Prevention, Sanhe 065201, China
| | - Xiao Liu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Minghui Jiang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bichuan Chi
- China Institute of Building Standard Design and Research, Beijing 100048, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jin Guo
- State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Ziming Wang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Suping Cui
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Wang H, Kang X, Han B. Rare-earth Element-based Electrocatalysts Designed for CO 2 Electro-reduction. CHEMSUSCHEM 2024; 17:e202301539. [PMID: 38109070 DOI: 10.1002/cssc.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Wang X, Ding S, Feng X, Zhu Y. High stability copper clusters anchored on N-doped carbon nanosheets for efficient CO 2 electroreduction to HCOOH. J Colloid Interface Sci 2024; 653:741-748. [PMID: 37742433 DOI: 10.1016/j.jcis.2023.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Cu-based nanomaterials is crucial for electrochemical CO2 reduction reaction (CO2RR), but they inevitably undergo performance degradation due to structural self-reconstruction at a large current density during CO2RR. Here, we developed a pre-synthetic atomically dispersed Cu source strategy to fabricate a catalyst of stable Cu clusters anchored on N-doped carbon nanosheets (c-Cu/NC), which exhibited an exceptional electroreduction for CO2 to HCOOH with a Faradaic efficiency of up to 96.2 % at current density of 276.4 mA cm-2 at - 0.96 V vs. RHE, which surpasses most reported catalysts. Especially, there was no any decay in stability during a 100 h continuous test, attributed to a strong interaction of Cu-C for restraining its self-reconstruction during CO2RR. DFT calculations indicated that N-doped carbon can strongly stabilize Cu clusters for keeping stability and cause the downshift of d-band center of Cu on c-Cu/NC for reducing the desorption energy between c-Cu/NC and OCHO* intermediates. This work provides an effective way to construct stable Cu clusters catalysts, and unveil the origin of catalyticmechanism over Cu clusters anchored on N-doped carbon towards electrochemical conversion ofCO2 to HCOOH.
Collapse
Affiliation(s)
- Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaochen Feng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Liu L, Wu X, Wang F, Zhang L, Wang X, Song S, Zhang H. Dual-Site Metal Catalysts for Electrocatalytic CO 2 Reduction Reaction. Chemistry 2023; 29:e202300583. [PMID: 37367498 DOI: 10.1002/chem.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Strijevskaya A, Yamaguchi A, Shoji S, Ueda S, Hashimoto A, Wen Y, Wardhana AC, Lee JE, Liu M, Abe H, Miyauchi M. Nanophase-Separated Copper-Zirconia Composites for Bifunctional Electrochemical CO 2 Conversion to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23299-23305. [PMID: 37140359 DOI: 10.1021/acsami.3c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A copper-zirconia composite having an evenly distributed lamellar texture, Cu#ZrO2, was synthesized by promoting nanophase separation of the Cu51Zr14 alloy precursor in a mixture of carbon monoxide (CO) and oxygen (O2). High-resolution electron microscopy revealed that the material consists of interchangeable Cu and t-ZrO2 phases with an average thickness of 5 nm. Cu#ZrO2 exhibited enhanced selectivity toward the generation of formic acid (HCOOH) by electrochemical reduction of carbon dioxide (CO2) in aqueous media at a Faradaic efficiency of 83.5% at -0.9 V versus the reversible hydrogen electrode. In situ Raman spectroscopy has revealed that a bifunctional interplay between the Zr4+ sites and the Cu boundary leads to amended reaction selectivity along with a large number of catalytic sites.
Collapse
Affiliation(s)
- Anna Strijevskaya
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan
- Uzbek-Japan Innovation Center of Youth, Tashkent 100095, Uzbekistan
| | - Akira Yamaguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan
| | - Shusaku Shoji
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York, 14853-1501, United States
| | - Shigenori Ueda
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ayako Hashimoto
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yu Wen
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Aufandra Cakra Wardhana
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan
| | - Ji-Eun Lee
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physical and Electronics, Central South University, Changsha 410083, Public Republic of China
| | - Hideki Abe
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, Saitama University, Saitama 338-8570, Japan
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
6
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
7
|
Mosali VSS, Bond AM, Zhang J. Alloying strategies for tuning product selectivity during electrochemical CO 2 reduction over Cu. NANOSCALE 2022; 14:15560-15585. [PMID: 36254597 DOI: 10.1039/d2nr03539a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive reliance on fossil fuels has led to the release and accumulation of large quantities of CO2 into the atmosphere which has raised serious concerns related to environmental pollution and global warming. One way to mitigate this problem is to electrochemically recycle CO2 to value-added chemicals or fuels using electricity from renewable energy sources. Cu is the only metallic electrocatalyst that has been shown to produce a wide range of industrially important chemicals at appreciable rates. However, low product selectivity is a fundamental issue limiting commercial applications of electrochemical CO2 reduction over Cu catalysts. Combining copper with other metals that actively contribute to the electrochemical CO2 reduction reaction process can selectively facilitate generation of desirable products. Alloying Cu can alter surface binding strength through electronic and geometric effects, enhancing the availability of surface confined carbon species, and stabilising key reduction intermediates. As a result, significant research has been undertaken to design and fabricate copper-based alloy catalysts with structures that can enhance the selectivity of targeted products. In this article, progress with use of alloying strategies for development of Cu-alloy catalysts are reviewed. Challenges in achieving high selectivity and possible future directions for development of new copper-based alloy catalysts are considered.
Collapse
Affiliation(s)
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton 3800, Victoria, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
8
|
Ma Z, Tsounis C, Toe CY, Kumar PV, Subhash B, Xi S, Yang HY, Zhou S, Lin Z, Wu KH, Wong RJ, Thomsen L, Bedford NM, Lu X, Ng YH, Han Z, Amal R. Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO 2 Reduction toward Valuable Products. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhipeng Ma
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Priyank V. Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Bijil Subhash
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Shibo Xi
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore 627833, Singapore
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682, Singapore
| | - Shujie Zhou
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Zeheng Lin
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Kuang-Hsu Wu
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Roong Jien Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore 138602 Singapore
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nicholas M. Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Xunyu Lu
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
9
|
Wang D, Dong S, Wen L, Yu W, He Z, Guo Q, Lu X, Wang L, Song S, Ma J. Highly selective electrocatalytic reduction of CO 2 to HCOOH over an in situ derived hydrocerussite thin film on a Pb substrate. CHEMOSPHERE 2022; 291:132889. [PMID: 34780747 DOI: 10.1016/j.chemosphere.2021.132889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
A metal oxide electrode has been developed for the electrochemical CO2 reduction reaction (eCO2RR). It exhibits superior activity and product selectivity towards eCO2RR by circumventing the previously encountered problem of self-reduction with high-valence metals. Specifically, a hydrocerussite [Pb3(CO3)2(OH)2] thin film has been synthesized in situ on a Pb substrate (denoted as ER-HC) by an electroreduction method using a lead-based metal-organic framework (Pb-MOF) as a precursor. The ER-HC electrode exhibits a high selectivity of 96.8% towards HCOOH production with a partial current density of 1.9 mA cm-2 at -0.88 V vs. the reversible hydrogen electrode (RHE). A higher HCOOH partial current density of 7.3 mA cm-2 has been achieved at -0.98 V vs. RHE. Physicochemical and electrochemical characterization results demonstrate that the defective hydrocerussite surface exhibits appropriate adsorption free energy of formate (HCOO-) and a lower reaction free energy for HCOOH production from CO2, which greatly boosts the eCO2RR activity and HCOOH production selectivity. The structure and eCO2RR performance of the hydrocerussite thin film remain stable in 0.1 M KHCO3 as electrolyte, ensuring its durability. Overall, this work not only provides a metal oxide electrode (metal hydroxide, to be more precise) with excellent eCO2RR performance, but also expands the in situ electrochemical derivatization strategy for the fabrication of metal oxide electrodes.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shiwen Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lingsha Wen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiting Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qingqing Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Guo Y, Chen C, Wang Y, Hong Y, Wang K, Niu D, Zhang C, Zhang Q. Cu/CuxO@C nanocomposites as efficient electrodes for high-performance supercapacitor devices. Dalton Trans 2022; 51:14551-14556. [DOI: 10.1039/d2dt02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method, reduction followed by oxidation procedure, has been developed to fabricate the efficient electrodes derivated from metal-organic frameworks (MOFs), which were synthesized using terephthalic acid (TP) or 1,3,5-benzenetricarboxylic...
Collapse
|