1
|
Lou J, Han H, Zhang Z, Feng C, An J, Wang X. Citric acid modulated strong magnetic CoFe-LDH/CoFe 2O 4 coupled dielectric barrier discharge plasma for efficient levofloxacin degradation: Enhanced internal electric field and accelerated electron migration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136077. [PMID: 39405687 DOI: 10.1016/j.jhazmat.2024.136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 12/01/2024]
Abstract
A novel citric acid (CA) modulation strategy was developed to prepare strong magnetic CoFe-LDH/CoFe2O4-C composites, which were combined with dielectric barrier discharge (DBD) to effectively degrade levofloxacin (LEV) in wastewater. Kelvin probe force microscopy (KPFM) test showed that CA modulation facilitated a more powerful internal electric field to drive rapid charge migration. The addition of CoFe-LDH/CoFe2O4-C increased LEV degradation from 78.2 % to 98.6 % and reduced energy efficiency from 24.77 to 8.93 kWh m-3. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed the CoFe-LDH/CoFe2O4-C could take full advantage of the active substances originating from DBD plasma and highlighted the role of 1O2 and ·O2-. Density functional theory (DFT) calculation revealed that the heterojunction can not only drive faster electron migration but also reduce the energy barrier of O3 decomposition. Possible degradation pathways for LEV were proposed. This study opened up a new avenue for the synthesis of applicable catalysts for plasma systems in water treatment areas.
Collapse
Affiliation(s)
- Jing Lou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hao Han
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China
| | - Zihan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiutao An
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
2
|
Qiang X, Jia B, Wu X. V-Doping Strategy Induces the Construction of the CoFe-LDHs/NF Electrodes with Higher Conductivity to Achieve Higher Energy Density for Advanced Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404557. [PMID: 38984744 DOI: 10.1002/smll.202404557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Doping of metal ions shows promising potential in optimizing and modulating the electrical conductivity of layered double hydroxides (LDHs). However, there is still much room for improvement in common metal ions and conventional doping methods. In contrast to previous methodologies, a hollow triangular nanoflower structure of CoFeV-LDHs is devised, which is enriched with a greater number of oxygen vacancies. This resulted in a significant enhancement in the conductivity of the LDHs, leading to an increase in energy density following the appropriate doping of V. To investigate the impact of V-doping on the energy density of the LDHs, in situ XPS and in situ X-ray spectroscopy is employed. Regarding electrochemical performance, the CoFeV-LDHs/NF electrode with optimal doping ratio exhibited a specific capacitance of 881 F g-1 at a current density of 1 A g-1. The capacitance remained at 90.53% after 3000 cycles. In addition, the constructed battery-type supercapacitor CoFeV-LDHs/NF-2//AC exhibited an impressive energy density of 124.7 Wh kg-1 at a power density of 850 W kg-1 and capacitance remained almost unchanged at 95.2% after 3000 cycles. All the above demonstrates the great potential of V-doped LDHs and brings a new way for the subsequent research of LDHs.
Collapse
Affiliation(s)
- Xinrui Qiang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Weiyang University Park, No.2 Xuefu Middle Road, Xi'an, Shaanxi, 710021, China
| | - Bingzhe Jia
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Weiyang University Park, No.2 Xuefu Middle Road, Xi'an, Shaanxi, 710021, China
| | - Xinming Wu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Weiyang University Park, No.2 Xuefu Middle Road, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
3
|
Liu J, Li T, Wang Q, Liu H, Wu J, Sui Y, Li H, Tang P, Wang Y. Bifunctional PdMoPt trimetallene boosts alcohol-water electrolysis. Chem Sci 2024:d4sc04764h. [PMID: 39323526 PMCID: PMC11417933 DOI: 10.1039/d4sc04764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Substituting oxygen evolution with alcohol oxidation is crucial for enhancing the cathodic hydrogen evolution reaction (HER) at low voltages. However, the development of high-performance bifunctional catalysts remains a challenge. In this study, an ultrathin and porous PdMoPt trimetallene is developed using a wet-chemical strategy. The synergetic effect between alloying metals regulates the adsorption energy of reaction intermediates, resulting in exceptional activity and stability for the electrooxidation of various alcohols. Specifically, the mass activity of PdMoPt trimetallene toward the electrooxidation of methanol, ethylene glycol, and glycerol reaches 6.13, 5.5, and 4.37 A mgPd+Pt -1, respectively. Moreover, the catalyst demonstrates outstanding HER activity, requiring only a 39 mV overpotential to achieve 10 mA cm-2. By employing PdMoPt trimetallene as both the anode and cathode catalyst, we established an alcohol-water hybrid electrolysis system, significantly reducing the voltage requirements for hydrogen production. This work presents a promising avenue for the development of bifunctional catalysts for energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Junfeng Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Tong Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Qiuxia Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Haiting Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Jingjing Wu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Yanping Sui
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Pengyi Tang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) Shanghai 200050 China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
4
|
Rho YJ, Lee C, Kim M, Ryu WH. Symmetric Catalyst Design Employing Ir Nanoparticles on Black WO 3- x Nanofiber Support for Boosting Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401858. [PMID: 38693069 DOI: 10.1002/smll.202401858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Indexed: 05/03/2024]
Abstract
The efficient evolution of gaseous hydrogen and oxygen from water is required to realize sustainable energy conversion systems. To address the sluggish kinetics of the multielectron transfer reaction, bifunctional catalyst materials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) should be developed. Herein, a tailored combination of atomically minimized iridium catalysts and highly conductive black WO3- x nanofiber supports are developed for the bifunctional electrolyzer system. Atomic Ir catalysts, particularly those that activate the OER, minimize the utilization of precious metals. The oxygen-deficient black WO3- x NF support, which boosts the HER, offers increased electronic conductivity and favorable nucleation sites for Ir loading. The Ir-black WO3- x NFs exhibit increased double-layer capacitance, a significantly reduced onset potential, lower Tafel slope, and stable cyclability for both the OER and HER, compared to large-sized Ir catalysts loaded on white WO3 nanofibers. This study offers a strategy for developing an optimal catalyst material with suitable supports for high-performance and economical water electrolysis systems for achieving carbon-negative targets.
Collapse
Affiliation(s)
- Yeo-Jin Rho
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Won-Hee Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| |
Collapse
|
5
|
Tayebi M, Masoumi Z, Seo B, Lim CS, Hong CH, Kim HJ, Kyung D, Kim HG. Production of H 2 and Glucaric Acid Using Electrocatalyst Glucose Oxidation by the Ta NiFe LDH Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26107-26120. [PMID: 38725264 DOI: 10.1021/acsami.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The slow anodic oxygen evolution reaction (OER) significantly limits electrocatalytic water splitting for hydrogen production. We proposed the electrocatalyst for glucose oxidation by Ta-doping NiFe LDH nanosheets to simultaneously obtain glucaric acid (GRA) and hydrogen gas as a useful byproduct. Superior glucose oxidation reaction (GOR) activity is demonstrated by the optimized Ta-NiFe LDH, which has a low overpotential of 192 mV, allowing for a small Tafel slope of 70 mV dec-1 and a current density of 50 mA cm-2. The Ta NiFe LDH-oxidized glucose to GRA with a 72.94% yield and 64.3% Faradaic efficiency at 1.45 VRHE. Herein, we report the Ta NiFe LDH/NF electrode for the GOR&hydrogen evolution reaction (HER), which exhibits a cell voltage of 1.62 V to reach a current density of 10 mA cm-2, which is 250 mV lower compared to OER&HER (1.87 V). This study reveals that GOR is an energy-efficient and cost-effective method for producing H2 and valorizing biomass.
Collapse
Affiliation(s)
- Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Chae Hwan Hong
- Research & Development Division, Hyundai Motor Company, Uiwang 16082, Gyeonggi-do, Republic of Korea
| | - Hye Jin Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| |
Collapse
|
6
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Qian Q, Zhu Y, Ahmad N, Feng Y, Zhang H, Cheng M, Liu H, Xiao C, Zhang G, Xie Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306108. [PMID: 37815215 DOI: 10.1002/adma.202306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Indexed: 10/11/2023]
Abstract
As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
8
|
Wang B, Xiao X, Li J, Zhang M, Jiao M, Zheng Z, Li T, Zhang Q, Zhang X, Zhou G. Sulfion oxidation assisting self-powered hydrogen production system based on efficient catalysts from spent lithium-ion batteries. Proc Natl Acad Sci U S A 2023; 120:e2317174120. [PMID: 38127984 PMCID: PMC10756193 DOI: 10.1073/pnas.2317174120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Converting spent lithium-ion batteries (LIBs) and industrial wastewater into high-value-added substances by advanced electrocatalytic technology is important for sustainable energy development and environmental protection. Here, we propose a self-powered system using a home-made sulfide fuel cell (SFC) to power a two-electrode electrocatalytic sulfion oxidation reaction (SOR)-assisted hydrogen (H2) production electrolyzer (ESHPE), in which the sulfion-containing wastewater is used as the liquid fuel to produce clean water, sulfur, and hydrogen. The catalysts for the self-powered system are mainly prepared from spent LIBs to reduce the cost, such as the bifunctional Co9S8 catalyst was prepared from spent LiCoO2 for SOR and hydrogen evolution reaction (HER). The Fe-N-P codoped coral-like carbon nanotube arrays encapsulated Fe2P (C-ZIF/sLFP) catalyst was prepared from spent LiFePO4 for oxygen reduction reaction. The Co9S8 catalyst shows excellent catalytic activities in both SOR and HER, evidenced by the low cell voltage of 0.426 V at 20 mA cm-2 in ESHPE. The SFC with Co9S8 as anode and C-ZIF/sLFP as cathode exhibits an open-circuit voltage of 0.69 V and long discharge stability for 300 h at 20 mA cm-2. By integrating the SFC and ESHPE, the self-powered system delivers an impressive hydrogen production rate of 0.44 mL cm-2 min-1. This work constructs a self-powered system with high-performance catalysts prepared from spent LIBs to transform sulfion-containing wastewater into purified water and prepare hydrogen, which is promising to achieve high economic efficiency, environmental remediation, and sustainable development.
Collapse
Affiliation(s)
- Boran Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Xiao Xiao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Junfeng Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Mengtian Zhang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Miaolun Jiao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Zhiyang Zheng
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Tongtong Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Qi Zhang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Xuan Zhang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| | - Guangmin Zhou
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
9
|
Yin B, Hao L, Li X, Yang Q. CoC x‑induced interfacial octahedral Co 2+ sites of NiCo-LDH electrode with improved faradic reactivity toward high-performance supercapacitor. J Colloid Interface Sci 2023; 651:602-611. [PMID: 37562302 DOI: 10.1016/j.jcis.2023.07.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Battery-like electrode materials are characterized by large theoretical capacitance but suffer from poor surface reactivity and insufficient electroactive sites thus limiting their practical charge storage capacity. To overcome this challenge, an effective strategy for vacancy modulation on battery-like electrode materials is necessary. Herein, we report for the first time an elaborately designed three-dimensional (3D) hierarchical heterostructure consisting of CoCx@NiCo-LDH on conductive nickel foam as a freestanding supercapacitor electrode. Benefiting from the weakening of the coordination of CoO bonds, the CoCx structure induces in-situ reconstruction of the NiCo-LDH lattice, resulting in the formation of abundant oxygen vacancies (interfacial octahedral Co2+ sites) that lower the OH- adsorption energy as determined by the density functional theory (DFT) calculation. The resulting CoCx@NiCo-LDH/NF electrode exhibits an ultrahigh rate capability (2330 mF cm-2 at 0.3 mA cm-2, with capacitance retention of 51.5 % at 30 mA cm-2) and remarkable cycling performance (capacitance retention of 81.6 % after 10,000 cycles). Additionally, the assembled asymmetric devices deliver an extremely high energy density of 246 μWh cm-2 at the power density of 798 μW cm-2, with 87.8 % capacitance retention after 10,000 cycles at 8 mA cm-2. Overall, this study presents a simple yet effective strategy to construct high-performance battery-like electrodes for potential applications in energy storage, transportation, and communication.
Collapse
Affiliation(s)
- Baoyi Yin
- School of Microelectronics, Dalian University of Technology, Dalian 116024, China
| | - Liang Hao
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaogan Li
- School of Microelectronics, Dalian University of Technology, Dalian 116024, China
| | - Qiguo Yang
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Yang X, He X, He L, Chen J, Zhang L, Liu Q, Cai Z, Yang C, Sun S, Zheng D, Farouk A, Hamdy MS, Ren Z, Sun X. A Hierarchical CuO Nanowire@CoFe-Layered Double Hydroxide Nanosheet Array as a High-Efficiency Seawater Oxidation Electrocatalyst. Molecules 2023; 28:5718. [PMID: 37570688 PMCID: PMC10420605 DOI: 10.3390/molecules28155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.
Collapse
Affiliation(s)
- Xiya Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lang He
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Mohamed S. Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| |
Collapse
|
11
|
Song W, Xu Y, Xie X, Li C, Zhu W, Xiang Q, Chen W, Tang N, Wang L. CoFe-Layered Double Hydroxide Coupled with Pd Particles for Electrocatalytic Ethanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37216444 DOI: 10.1021/acsami.3c01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrocatalytic efficiency and stability have emerged as critical issues in the ethanol oxidation reaction (EOR) of direct ethanol fuel cells. In this paper, Pd/Co1Fe3-LDH/NF as an electrocatalyst for EOR was prepared by a two-step synthetic strategy. Metal-oxygen bonds formed between Pd nanoparticles and Co1Fe3-LDH/NF guaranteed structural stability and adequate surface-active site exposure. More importantly, the charge transfer of the formed Pd-O-Co(Fe) bridge could effectively modulate the electrical structure of hybrids, improving the facilitated absorption of OH- radicals and oxidation of COads. Benefiting from the interfacial interaction, exposed active sites, and structural stability, the observed specific activity for Pd/Co1Fe3-LDH/NF (17.46 mA cm-2) was 97 and 73 times higher than those of commercial Pd/C (20%) (0.18 mA cm-2) and Pt/C (20%) (0.24 mA cm-2), respectively. Besides, the jf/jr ratio representing the resistance to catalyst poisoning was 1.92 in the Pd/Co1Fe3-LDH/NF catalytic system. These results provide insights into optimizing the electronic interaction between metals and the support of electrocatalysts for EOR.
Collapse
Affiliation(s)
- Wenwen Song
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Xiangli Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Qiankun Xiang
- Shenzhen Shenai Semiconductor Co., Ltd., Shenzhen 518116, China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
12
|
Wang C, Wang W, Guo W, Guo D, Li J, Yang X, Fu S, Chai DF, Sui G, Li Y. Liquid nitrogen quenching inducing lattice tensile strain to endow nitrogen/fluorine co-doping Fe 3O 4 nanocubes assembled on porous carbon with optimizing hydrogen evolution reaction. J Colloid Interface Sci 2023; 638:813-824. [PMID: 36791479 DOI: 10.1016/j.jcis.2023.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In this work, the lattice tensile strain of nitrogen/fluorine co-doping ferroferric oxide (Fe3O4) nanocubes assembled on chrysanthemum tea-derived porous carbon is induced through a novel liquid nitrogen quenching treatment (named as TS-NF-FO/PCX-Y, TS: Tensile strain, NF: Nitrogen/Fluorine co-doping, FO: Fe3O4, PC: Porous carbon, X: The weight ratio of KOH/carbon, Y: The adding amount of porous carbon). Besides, the electrocatalytic activity influenced by the adding amount of porous carbon, the type of dopant, and the introduction of lattice tensile strain is systematically studied and explored. The interconnected porous carbon could improve electrical conductivity and prevent Fe3O4 nanocubes from aggregating. The induced nitrogen/fluorine could cause extrinsic defects and tailor the intrinsic electron state of the host materials. Lattice tensile strain could tailor the surface electronic structure of Fe3O4 via changing the dispersion of surface atoms and their bond lengths. Impressively, the designed TS-NF-FO/PC5-0.25 delivers a low overpotential of 207.3 ± 0.4 mV at 10 mA/cm2 and demonstrates desirable reaction dynamics. Density functional theory calculations illustrate that the electron structure and hydrogen adsorption free energy (ΔG*H) are optimized by the synergistic effect among porous carbon, nitrogen/fluorine co-doping and lattice tensile strain, thus promoting hydrogen evolution reaction (HER) catalytic activity. Overall, this work paves the way to unravel the enhancement mechanism of HER on transition metal oxide-based materials by electronic structure and phase composition modulation strategy.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
13
|
Zheng X, Xu J, Lin R, He Y, Yu Y, Zhang Y, Xie L. Internal driving mechanism of microbial community and metabolic pathway for psychrophilic anaerobic digestion by microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2023; 374:128764. [PMID: 36822554 DOI: 10.1016/j.biortech.2023.128764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The system that microbial electrolysis cell coupled anaerobic digestion (termed MEC-AD) with metal organic framework-modified cathode was operated under different voltage levels (0-1.2 V) at 20 °C. The maximum methane yield increased to 0.23 ± 0.01 LCH4 g-1COD at 0.9 V, with 28% improvement compared to 0 V (0.18 ± 0.01 LCH4 g-1COD). Moreover, total volatile fatty acid and propionate accumulation decreased by 32% and 15% at 0.9 V, indicating the system has potential to alleviate acidity suppression. Acidogens and electroactive microorganisms was clearly enriched with increasing applied voltage. Specifically, the abundance of Smithella increased, which could degrade propionate to acetate. Methanosaeta was dominant, accounting for ca. 40.1%∼55.1% of the archaea community at 0.3-1.2 V. Furthermore, the system reinforced psychrophilic methanogenesis by activating important enzymes involved in related metabolism pathways. Overall, this study provides perspective on the future practical application for the regulation of psychrophilic AD in electrochemically integrated bioreactors.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yaqing Yu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yue Zhang
- Water and Environmental Engineering Group, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Yang Q, Sun F, Wang X, Luo J, Wang S, Jia C, Pan Y, Zhang J, Zhou Y. Surface charge modulation enhanced high stability of gold oxidation intermediates for electrochemical glucose sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4474-4484. [PMID: 36317565 DOI: 10.1039/d2ay01375d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid and accurate blood glucose detection is significant for diagnosing and treating diabetes. Herein, ultra-low-content gold nanoparticles were loaded on different metal foams and applied to electrochemical enzyme-free glucose sensors via simple displacement reactions. The structures and properties of the produced catalysts were determined by various characterization methods. The performance of the glucose sensor was examined in relation to the interactions between three different metal substrates and gold. The one with the best performance is the sample of gold nanoparticles grown on copper foam (Au300 Cu Foam). It has the advantage of a porous three-dimensional network, a large electroactive surface area, and the high catalytic activity of gold. The combination of Cu and Au increased the valence state of Au, thus favoring the catalytic activity for glucose oxidation. Cyclic voltammetry and chronoamperometry measurements revealed that Au is responsible for the electrocatalytic oxidation of glucose. The sensitivity of Au300 Cu Foam was found to be 10 839 μA mM-1 cm-2 in the linear range of 0.00596-0.0566 mM, with a detection limit (LOD) of 0.223 μM, and 2-3 s response time at 0.4 V vs. Ag/AgCl. The Au300 Cu Foam glucose sensor also offered outstanding stability and anti-interference performance. The prepared Au300 Cu Foam electrode was also successfully applied to detect different levels of glucose in human body fluids, such as saliva. These characteristics make Au300 Cu Foam promising for non-invasive glucose detection.
Collapse
Affiliation(s)
- Qingyi Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fengchao Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xingzhao Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shutao Wang
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Cuiping Jia
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
15
|
Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts 2021. [DOI: 10.3390/catal11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.
Collapse
|