1
|
Geng Z, Feng Z, Kong H, Su J, Zhang K, Li J, Sun X, Liu X, Ge L, Gai P, Li F. Ruthenium Anchored Laser-Induced Graphene as Binder-Free and Free-Standing Electrode for Selective Electrosynthesis of Ammonia from Nitrate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406843. [PMID: 39136290 PMCID: PMC11497038 DOI: 10.1002/advs.202406843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Indexed: 10/25/2024]
Abstract
Developing effective electrocatalysts for the nitrate reduction reaction (NO3RR) is a promising alternative to conventional industrial ammonia (NH3) synthesis. Herein, starting from a flexible laser-induced graphene (LIG) film with hierarchical and interconnected macroporous architecture, a binder-free and free-standing Ru-modified LIG electrode (Ru-LIG) is fabricated for electrocatalytic NO3RR via a facile electrodeposition method. The relationship between the laser-scribing parameters and the NO3RR performance of Ru-LIG electrodes is studied in-depth. At -0.59 VRHE, the Ru-LIG electrode exhibited the optimal and stable NO3RR performance (NH3 yield rate of 655.9 µg cm-2 h-1 with NH3 Faradaic efficiency of up to 93.7%) under a laser defocus setting of +2 mm and an applied laser power of 4.8 W, outperforming most of the reported NO3RR electrodes operated under similar conditions. The optimized laser-scribing parameters promoted the surface properties of LIG with increased graphitization degree and decreased charge-transfer resistance, leading to synergistically improved Ru electrodeposition with more exposed NO3RR active sites. This work not only provides a new insight to enhance the electrocatalytic NO3RR performance of LIG-based electrodes via the coordination with metal electrocatalysts as well as identification of the critical laser-scribing parameters but also will inspire the rational design of future advanced laser-induced electrocatalysts for NO3RR.
Collapse
Affiliation(s)
- Zekun Geng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Zhiliang Feng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Haoran Kong
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaqi Su
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Kaiyan Zhang
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaxin Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Lei Ge
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Feng Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
2
|
Li Y, Zhang J, Han W, Liu B, Zhai M, Li N, Wang Z, Zhao J. Multifunctional Laser-Induced Graphene-Based Microfluidic Chip for High-Performance Oocyte Cryopreservation with Low Concentration of Cryoprotectants. Adv Healthc Mater 2024; 13:e2400981. [PMID: 38885030 DOI: 10.1002/adhm.202400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Oocyte cryopreservation is essential in the field of assisted reproduction, but due to the large size and poor environmental tolerance of oocytes, cell freezing technology needs further improvement. Here, a Y-shaped microfluidic chip based on 3D graphene is ingeniously devised by combining laser-induced graphene (LIG) technology and fiber etching technology. The prepared LIG/PDMS microfluidic chip can effectively suppress ice crystal size and delay ice crystal freezing time by adjusting surface hydrophobicity. In addition, LIG endows the microfluidic chip with an outstanding photothermal effect, which allows to sharply increase its surface temperature from 25 to 71.8 °C with 10 s of low-power 808 nm laser irradiation (0.4 W cm-2). Notably, the LIG/PDMS microfluidic chip not only replaces the traditional cryopreservation carriers, but also effectively reduces the dosage of cryoprotectants (CPAs) needed in mouse oocyte cryopreservation. Even when the concentration of CPAs is cut in half (final concentration of 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO)), the survival rate of oocytes is still as high as 92.4%, significantly higher than the control group's 85.8%. Therefore, this work provides a novel design strategy to construct multifunctional microfluidic chips for high-performance oocytes cryopreservation.
Collapse
Affiliation(s)
- Yifang Li
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Han
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Mengjie Zhai
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
3
|
Liu H, Zhong H, Yuan Q, Yang R, Kim M, Chan YHT, Chen S, Lin J, Li MG. Roll-to-Roll Manufacturing of Breathable Superhydrophobic Membranes. SMALL METHODS 2024:e2400038. [PMID: 38593365 DOI: 10.1002/smtd.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Self-cleaning and anti-biofouling are both advantages for lotus-leaf-like superhydrophobic surfaces. Methods for creating superhydrophobicity, including chemical bonding low surface energy molecular fragments and constructing surface morphology with protrusions, micropores, and trapped micro airbags by traditional physical strategies, unfortunately, have encountered challenges. They often involve complex synthesis processes, stubborn chemical accumulation, brutal degradation, or infeasible calculation and imprecise modulation in fabricating hierarchical surface roughness. Here, a scalable method to prepare high-quality, breathable superhydrophobic membranes is proposed by developing a successive roll-to-roll laser manufacturing technique, which offers advantages over conventional fabrication approaches in enabling automatically large-scale production and ensuring cost-effectiveness. Nanosecond laser writing and femtosecond laser drilling produce surface microstructures and micropore arrays, respectively, endowing the membrane with superior antiwater capability with hierarchical microstructures forming a barrier and blocking water infiltration. The membrane's breathability is carefully optimized by tailoring micropore arrays to allow for the adequate passage of water vapor while maintaining superhydrophobicity. These membranes combine the benefits of anti-aqueous corrosive liquid behaviors, photothermal effects, thermoplastic properties, and stretchable performances as promising comprehensive materials in diverse scenes.
Collapse
Affiliation(s)
- Huan Liu
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Haosong Zhong
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Qiaoyaxiao Yuan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Rongliang Yang
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Minseong Kim
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yee Him Timothy Chan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Siyu Chen
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jing Lin
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Mitch Guijun Li
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
4
|
Cao J, Yan C, Chai Z, Wang Z, Du M, Li G, Wang H, Deng H. Laser-induced transient conversion of rhodochrosite/polyimide into multifunctional MnO 2/graphene electrodes for energy storage applications. J Colloid Interface Sci 2024; 653:606-616. [PMID: 37738933 DOI: 10.1016/j.jcis.2023.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Laser-induced graphene (LIG) has been extensively investigated for electrochemical energy storage due to its easy synthesis and highly conductive nature. However, the limited charge accumulation in LIG usually leads to significantly low energy densities. In this work, we report a novel strategy to directly transform natural rhodochrosite into ultrafine manganese dioxide (MnO2) nanoparticles (NPs) in the polyimide (PI) substrate for high-performance micro-supercapacitors (MSCs) and lithium-ion batteries (LIBs) through a scalable and cost-effective laser processing method. Specifically, laser treatment on rhodochrosite/polyimide precursors induces the thermal explosion, which splits rhodochrosite (10 μm) into MnO2 NPs (12-16 nm) on the carbon matrix of LIG due to the sputtering effect. Benefiting from largely exposed active sites from the ultrafine MnO2 and the synergetic effect from highly conductive LIG, the MnO2/LIG MSCs show a high specific capacitance of 544.0 F g-1 (154.3 mF cm-2; 14.16 F cm-3) at 3 A/g and 82.1% capacitance retention after 10,000 cycles at 5A/g, in contrast to pure LIG (<100 F g-1). Moreover, the MnO2/LIG-based LIBs show the highest reversible discharge capacity of ∼1097 mAh g-1 at 0.2 A/g and ∼ 866.4 mAh g-1 at 1.0 A/g. This study opens a new route for synthesizing novel LIG-based composites from natural minerals.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Minghe Du
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Gen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
5
|
Li M, Hu H, Zhang M, Ding H, Wen J, Xie L, Du P. Droplet Transportation on Liquid-Infused Asymmetrically Structured Surfaces by Mechanical Oscillation and Viscosity Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16315-16327. [PMID: 37881899 DOI: 10.1021/acs.langmuir.3c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The transportation of droplets on solid surfaces has received significant attention owing to its importance in biochemical analysis and microfluidics. In this study, we propose a novel strategy for controlling droplet motion by combining an asymmetric structure and infused lubricating oil on a vibrating substrate. The transportation of droplets with volumes ranging from 10 to 90 μL was realized, and the movement speed could be adjusted from 1.45 to 10.87 mm/s. Typical droplet manipulations, including droplet transportation along a long trajectory and selective movement of multiple droplets, were successfully demonstrated. Through experimental exploration and theoretical analysis, we showed that the adjustment of droplet transport velocity involves an intricate interaction among the Ohnesorge number, droplet volume, and input amplitude. It can potentially be used for the more complex manipulation of liquid droplets in microfluidic and biochemical analysis systems.
Collapse
Affiliation(s)
- Mingsheng Li
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haibao Hu
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen; Sanhang Science & Technology Buliding, No. 45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City, 518063, China
| | - Mengzhuo Zhang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haiyan Ding
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wen
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luo Xie
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Du
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Dallinger A, Steinwender F, Gritzner M, Greco F. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability. ACS APPLIED NANO MATERIALS 2023; 6:16201-16211. [PMID: 37772265 PMCID: PMC10526650 DOI: 10.1021/acsanm.3c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 09/30/2023]
Abstract
The control of surface wettability is a technological key aspect and usually poses considerable challenges connected to high cost, nanostructure, and durability, especially when aiming at surface patterning with high and extreme wettability contrast. This work shows a simple and scalable approach by using laser-induced graphene (LIG) and a locally inert atmosphere to continuously tune the wettability of a polyimide/LIG surface from hydrophilic to superhydrophobic (Φ ∼ 160°). This is related to the reduced amount of oxygen on the LIG surface, influenced by the local atmosphere. Furthermore, the influence of the roughness pattern of LIG on the wettability is investigated. Both approaches are combined, and the influence of surface chemistry and roughness is discussed. Measurements of the roll-off angle show that LIG scribed in an inert atmosphere with a low roughness has the highest droplet mobility with a roll-off angle of ΦRO = (1.7 ± 0.3)°. The superhydrophobic properties of the samples were maintained for over a year and showed no degradation after multiple uses. Applications of surfaces with extreme wettability contrast in millifluidics and fog basking are demonstrated. Overall, the proposed processing allows for the continuous tuning and patterning of the surface properties of LIG in a very accessible fashion useful for "lab-on-chip" applications.
Collapse
Affiliation(s)
- Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Felix Steinwender
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Matthias Gritzner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale
R. Piaggio 34, 56025 Pontedera, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Interdisciplinary
Center on Sustainability and Climate, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
7
|
Yan D, Lu Y, Liu J, Chen Y, Sun J, Song J. Enhanced water transportation on a superhydrophilic serial cycloid-shaped pattern. NANOSCALE 2023. [PMID: 37387274 DOI: 10.1039/d3nr02180g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Spontaneous and directional water transportation (SDWT) is considered as an ideal water transportation method and has a great prospect in the aerospace and ship fields. Nonetheless, the existing SDWT has the limitation of a slow water transportation velocity because of its geometry structure configuration, which hinders the practical application of the SDWT. To overcome this limitation, we developed a new superhydrophilic serial cycloid-shaped pattern (SSCP) which was inspired by the micro-cavity shape of the Nepenthes. First, we experimentally found that the water transportation velocity on the SSCP was faster than that on the superhydrophilic serial wedge-shaped pattern (SSWP) and analyzed the faster water transportation mechanism. Then, the influence of the SSCP parameters on the transportation velocity was investigated by a single-factor experiment. In addition, the water transportation velocity on the SSCP was enhanced to 289 mm s-1 by combining the single-factor experiment, orthogonal optimization design, streamline junction transition optimization, and pre-wet pattern, which was the fastest in the SDWT. Moreover, the SSCP demonstrated its superior capability in long-distance water transportation, gravity resistant water transportation, heat transfer, and fog collection. This finding shows remarkable application prospects in the high-performance fluid transportation system.
Collapse
Affiliation(s)
- Defeng Yan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Yi Lu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jinming Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Yang Chen
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jing Sun
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
8
|
Han M, Ding X, Duan H, Luo S, Chen G. Ultrasensitive Humidity Sensors with Synergy between Superhydrophilic Porous Carbon Electrodes and Phosphorus-Doped Dielectric Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9740-9750. [PMID: 36759946 DOI: 10.1021/acsami.2c21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Capacitive humidity sensors have been used for human health monitoring, but their performance may be poor in terms of sensitivity and response time, because of limitations in sensing materials and insufficient knowledge about sensing mechanisms. Herein, a new combination of humidity sensing materials to assemble thin-film based capacitive-type sensors is proposed by using PA-doped polybenzimidazole (PA-PBI) as an electrolyte and laser-carbonized PA-PBI as a carbon electrode (PA-PBI-C). Based on PA involved laser scribing, the flexible sensor can reach excellent humidity-sensing performances with an ultrahigh sensitivity (1.16 × 106 pF RH%-1, where RH represents the relative humidity), a superior linearity (R2 = 0.9982), a fast response time (0.72 s), and a low hysteresis in a wide RH range from 1% to 95%. By further studying P-O decorated porous carbon electrode with superhydrophilicity and the solid-state dielectric electrolyte featured by a high dielectric constant, a synergistic sensing mechanism consisting of a "Water reservoir" and a "Bridge" is established to support advanced health-monitoring applications such as the respiration patterns and skin condition where both sensitivity and response time are critical.
Collapse
Affiliation(s)
- Mingguang Han
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Xilun Ding
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Haibin Duan
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Sida Luo
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Geng Chen
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
9
|
Liu F, Gao Y, Wang G, Wang D, Wang Y, He M, Ding X, Duan H, Luo S. Laser-Induced Graphene Enabled Additive Manufacturing of Multifunctional 3D Architectures with Freeform Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204990. [PMID: 36437047 PMCID: PMC9896062 DOI: 10.1002/advs.202204990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
3D printing has become an important strategy for constructing graphene smart structures with arbitrary shapes and complexities. Compared with graphene oxide ink/gel/resin based manners, laser-induced graphene (LIG) is unique for facile and scalable assembly of 1D and 2D structures but still faces size and shape obstacles for constructing 3D macrostructures. In this work, a brand-new LIG based additive manufacturing (LIG-AM) protocol is developed to form bulk 3D graphene with freeform structures without introducing extra binders, templates, and catalysts. On the basis of selective laser sintering, LIG-AM creatively irradiates polyimide (PI) powder-bed for triggering both particle-sintering and graphene-converting processes layer-by-layer, which is unique for assembling varied types of graphene architectures including identical-section, variable-section, and graphene/PI hybrid structures. In addition to exploring combined graphitizing and fusing discipline, processing efficiency and assembling resolution of LIG-AM are also balanceable through synergistic control of lasing power and powder-feeding thickness. By further studying various process dependent properties, a LIG-AM enabled aircraft-wing section model is finally printed to comprehensively demonstrate its shiftable process, hybridizable structure, and multifunctional performance including force-sensing, anti-icing/deicing, and microwave shielding and absorption.
Collapse
Affiliation(s)
- Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Dan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yanan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Meihong He
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
10
|
Manderfeld E, Thamaraiselvan C, Nunes Kleinberg M, Jusufagic L, Arnusch CJ, Rosenhahn A. Bacterial surface attachment and fouling assay on polymer and carbon surfaces using Rheinheimera sp. identified using bacteria community analysis of brackish water. BIOFOULING 2022; 38:940-951. [PMID: 36511186 DOI: 10.1080/08927014.2022.2153333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces in contact with sea- or brackish water can severely impact the function of devices like reverse osmosis modules. Single species laboratory assays are frequently used to test new low fouling materials. The choice of bacterial strain is guided by the natural population present in the application of interest and decides on the predictive power of the results. In this work, the analysis of the bacterial community present in brackish water from Mashabei Sadeh, Israel was performed and Rheinheimera sp. was detected as a prominent microorganism. A Rheinheimera strain was selected to establish a short-term accumulation assay to probe initial bacterial attachment as well as biofilm growth to determine the biofilm-inhibiting properties of coatings. Both assays were applied to model coatings, and technically relevant polymers including laser-induced graphene. This strategy might be applied to other water sources to better predict the fouling propensity of new coatings.
Collapse
Affiliation(s)
- Emily Manderfeld
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, India
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Lejla Jusufagic
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| |
Collapse
|
11
|
Zhao W, Jiang Y, Yu W, Yu Z, Liu X. Wettability Controlled Surface for Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202906. [PMID: 35793418 DOI: 10.1002/smll.202202906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
To achieve clean and high-efficiency utilization of renewable energy, functional surfaces with controllable and patternable wettability are becoming a fast-growing research focus. In this work, a laser scribing strategy to fabricate patterned graphene surfaces that are capable of energy conversion in different forms is demonstrated. Using the laser raster-scanning and vector-scanning modes, two distinct surface structures are constructed on polybenzoxazine substrate, yielding a superhydrophilic (LSHL) surface and superhydrophobic (LSHB) surface, respectively. Of particular note is that the unique hierarchical structure of LSHB surface has endowed it with quite a robust superwetting behaviors. Further profiting from the flexibility of the processing method, wettability patterns with spatially resolved LSHL and LSHB regions are designed, achieving the conversion of surface energy to liquid kinetic energy. This also offers a tractable approach to fabricate wettability-engineered devices that enable the directional, pumpless transport of water by capillary pressure gradient and the selective surface cooling via jet impingement. In addition, the LSHB surface demonstrates the high conversion of electric-to-thermal energy (222 °C cm2 W-1 ) and light-to-thermal energy (88%). Overall, the material system and processing method present a promising step forward to developing easy-fabricated graphene surfaces with spatially controlled wettability for efficient energy utilization and conversion.
Collapse
Affiliation(s)
- Weiwei Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Ye Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjie Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zeqi Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
12
|
Wang W, Lu L, Lu X, Liang Z, Tang B, Xie Y. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gao Y, Zhai Y, Wang G, Liu F, Duan H, Ding X, Luo S. 3D-Laminated Graphene with Combined Laser Irradiation and Resin Infiltration toward Designable Macrostructure and Multifunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200362. [PMID: 35322597 PMCID: PMC9130875 DOI: 10.1002/advs.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Macroscopic 3D graphene has become a significant topic for satisfying the continuously upgraded smart structures and devices. Compared with liquid assembling and catalytic templating methods, laser-induced graphene (LIG) is showing facile and scalable advantages but still faces limited sizes and geometries by using template induction or on-site lay-up strategies. In this work, a new LIG protocol is developed for facile stacking and shaping 3D LIG macrostructures by laminating layers of LIG papers (LIGPs) with combined resin infiltration and hot pressing. Specifically, the constructed 3D LIGP composites (LIGP-C) are compatible with large area, high thickness, and customizable flat or curved shapes. Additionally, systematic research is explored for investigating critical processing parameters on tuning its multifunctional properties. As the laminated layers are stacked from 1 to 10, it is discovered that piezoresistivity (i.e., gauge factor) of LIGP-C dramatically reflects an ≈3900% improvement from 0.39 to 15.7 while mechanical and electrical properties maintain simultaneously at the highest levels, attributed to the formation of densely packed fusion layers. Along with excellent durability for resisting multiple harsh environments, a sensor-array system with 5 × 5 LIGP-C elements is finally demonstrated on fiber-reinforced polymeric composites for accurate strain mapping.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yujiang Zhai
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
14
|
Han Y, Han Y, Huang Y, Wang C, Liu H, Han L, Zhang Y. Laser-Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications. SMALL METHODS 2022; 6:e2200096. [PMID: 35199498 DOI: 10.1002/smtd.202200096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The fabrication and applications of superhydrophobic surfaces (contact angle >150°, sliding angle <10°) have attracted worldwide interest with respect to materials and devices. In this work, the laser-induced graphene (LIG) superhydrophobic surface transition from pinning to rolling via an extremely simple solvent treatment of LIG in air is reported. By adding a certain solvent (e.g., ethanol) to the surface, the LIG superhydrophobic surface changes from pinning (sliding angle = 180°) to rolling (sliding angle <6°), which is attributed to the chemically changed surface properties and surface morphology of LIG. Three applications are demonstrated with the developed superhydrophobic LIG, including surface-enhanced Raman spectroscopy, water-oil separation, and anti-icing.
Collapse
Affiliation(s)
- Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| | - Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| | - Yuzhen Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266000, China
| |
Collapse
|
15
|
Zhang G, Zhao Y, Sun J. Design and fabrication of a large-range graphene/hexagonal boron nitride heterostructure based pressure sensor with poly(methyl methacrylate) substrate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:015009. [PMID: 35104979 DOI: 10.1063/5.0065687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Aiming at overpressure measurement, this paper presents a large-range graphene/hexagonal boron nitride (h-BN) heterostructure-based pressure sensor with a poly(methyl methacrylate) (PMMA) substrate. Graphene and h-BN are chosen as sensitive materials because they both have large Young's modulus, high intrinsic strength, high natural frequency, and atomic thickness at the same time. These characteristics provide favorable conditions for the application of the sensor in the high pressure and high frequency dynamic environment. Moreover, the photoresist-assisted transfer technology is proposed for transferring graphene from the growth substrate to the PMMA substrate and the lift-off method with exposure and development is developed to achieve metal patterning on the PMMA substrate. The sensor characterization results suggest that the graphene and h-BN films have good transfer qualities and the heterojunction possesses excellent electrical performance. The static pressure loading experiments confirm that the sensor has a pressure range of up to 85 MPa and its piezoresistive coefficient is 0.7 GPa-1, which indicates that the designed sensor is suitable for overpressure fields. This study provides a novel method for determining overpressure and lays a foundation for the fabrication of graphene-based electronic devices with an organic substrate.
Collapse
Affiliation(s)
- Guodong Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Sun
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|