1
|
Zhu J, Shen F, Chen Z, Liu F, Jin S, Lei D, Xu J. Deterministic Areal Enhancement of Interlayer Exciton Emission by a Plasmonic Lattice on Mirror. ACS NANO 2024; 18:13599-13606. [PMID: 38742607 PMCID: PMC11140836 DOI: 10.1021/acsnano.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
The emergence of interlayer excitons (IX) in atomically thin heterostructures of transition metal dichalcogenides (TMDCs) has drawn great attention due to their unique and exotic optical and optoelectronic properties. Because of the spatially indirect nature of IX, its oscillator strength is 2 orders of magnitude smaller than that of the intralayer excitons, resulting in a relatively low photoluminescence (PL) efficiency. Here, we achieve the PL enhancement of IX by more than 2 orders of magnitude across the entire heterostructure area with a plasmonic lattice on mirror (PLoM) structure. The significant PL enhancement mainly arises from resonant coupling between the amplified electric field strength within the PLoM gap and the out-of-plane dipole moment of IX excitons, increasing the emission efficiency by a factor of around 47.5 through the Purcell effect. This mechanism is further verified by detuning the PLoM resonance frequency with respect to the IX emission energy, which is consistent with our theoretical model. Moreover, our simulation results reveal that the PLoM structure greatly alters the far-field radiation of the IX excitons preferentially to the surface normal direction, which increases the collection efficiency by a factor of around 10. Our work provides a reliable and universal method to enhance and manipulate the emission properties of the out-of-plane excitons in a deterministic way and holds great promise for boosting the development of photoelectronic devices based on the IX excitons.
Collapse
Affiliation(s)
- Jiasen Zhu
- Department
of Electronic Engineering, The Chinese University
of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Fuhuan Shen
- Department
of Electronic Engineering, The Chinese University
of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Zefeng Chen
- School
of Optoelectronic Science and Engineering and Collaborative Innovation
Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Feihong Liu
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Shuaiyu Jin
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Dangyuan Lei
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jianbin Xu
- Department
of Electronic Engineering, The Chinese University
of Hong Kong, Shatin 999077, Hong Kong SAR, China
| |
Collapse
|
2
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
3
|
Zheng H, Wu B, Wang CT, Li S, He J, Liu Z, Wang JT, Duan JA, Liu Y. Moiré Enhanced Potentials in Twisted Transition Metal Dichalcogenide Trilayers Homostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207988. [PMID: 36938893 DOI: 10.1002/smll.202207988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The exploration of moiré superlatticesholds promising potential to uncover novel quantum phenomena emerging from the interplay of atomic structure and electronic correlation . However, the impact of the moiré potential modulation on the number of twisted layers has yet to be experimentally explored. Here, this work synthesizes a twisted WSe2 homotrilayer using a dry-transfer method and investigates the enhancement of the moiré potential with increasing number of twisted layers. The results of the study reveal the presence of multiple exciton resonances with positive or negative circularly polarized emission in the WSe2 homostructure with small twist angles, which are attributed to the excitonic ground and excited states confined to the moiré potential. The distinct g-factor observed in the magneto-optical spectroscopy is also shown to be a result of the confinement of the exciton in the moiré potential. The moiré potential depths of the twisted bilayer and trilayer homostructures are found to be 111 and 212 meV, respectively, an increase of 91% from the bilayer structure. These findings demonstrate that the depth of the moiré potential can be manipulated by adjusting the number of stacked layers, providing a promising avenue for exploration into highly correlated quantum phenomena.
Collapse
Affiliation(s)
- Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
| | - Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
| | - Chang-Tian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
| | - Jun He
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, People's Republic of China
| | - Ji-An Duan
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen, 518057, People's Republic of China
| |
Collapse
|
4
|
Koo Y, Lee H, Ivanova T, Kefayati A, Perebeinos V, Khestanova E, Kravtsov V, Park KD. Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. LIGHT, SCIENCE & APPLICATIONS 2023; 12:59. [PMID: 36864035 PMCID: PMC9981773 DOI: 10.1038/s41377-023-01087-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Tatiana Ivanova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Ali Kefayati
- Department of Electrical Engineering, University at Buffalo, New York, NY, 14260, USA
| | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo, New York, NY, 14260, USA
| | - Ekaterina Khestanova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia.
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|