1
|
Gao Y, Xiao H, Ma X, Yue Z, Geng B, Zhao M, Zhang L, Zhang J, Zhang J, Jia J, Wu H. Cooperative adsorption of interfacial Ga-N dual-site in GaOOH@N-doped carbon nanotubes for enhanced electrocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2024; 654:339-347. [PMID: 37844505 DOI: 10.1016/j.jcis.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
To reduce activation energy barrier and promote the kinetics of electrocatalytic CO2 reduction reaction (eCO2RR), the performance of CO2 adsorption and activation on electrocatalysts should be optimized. Here, GaOOH is successfully coupled with N-doped carbon nanotubes (NC) via a facile self-assembly-calcination process. The obtained GaOOH@N-doped carbon nanotubes (Ga-NC) display the best CO faradaic efficiency of 96.1 % at -0.6 V (vs. reversible hydrogen electrode). Control-experiment and characterization results suggest Ga-N dual-site in interface between GaOOH and NC shows cooperative adsorption of CO2. C atom in CO2 is adsorbed on N site while O atom in CO2 is adsorbed on Ga site. This cooperative adsorption efficiently promotes the CO2 adsorption and activation performance, as well as the breaking of CO bond due to opposite attraction from Ga-N dual-site. Moreover, in-situ Fourier transform infrared spectroscopy confirms decreased reaction barrier for formation of *CO2- and *COOH intermediates. This work inspires us to construct interfacial dual-site structure with cooperative adsorption property for promoting eCO2RR activity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Xiaofang Ma
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Bo Geng
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Li Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| |
Collapse
|
2
|
Wang ZW, Xiao MY, Tang JF, Li MQ, Yin XY, Wang T, Zhu YZ, Pang DW, Wang HF. Surface engineering of Al 2O 3 nanotubes by ureasolysis method for activating persulfate degradation of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131844. [PMID: 37327612 DOI: 10.1016/j.jhazmat.2023.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Though ecofriendly, pure Al2O3 has never been used for activation of peroxodisulfate (PDS) to degrade pollutants. We report the fabrication of Al2O3 nanotubes by ureasolysis method for efficient activating PDS degradation of antibiotics. The fast ureasolysis in aqueous AlCl3 solution produces NH4Al(OH)2CO3 nanotubes, which are calcined to porous Al2O3 nanotubes, and the release of ammonia and carbon dioxide engineers the surface features of large surface area, numerous acidic-basic sites and suitable Zeta potentials. The synergy of these features facilitates the adsorption of the typical antibiotics ciprofloxacin and PDS activation, which is proved by experiment results and density functional theory simulation. The proposed Al2O3 nanotubes can catalyze 92-96% degradation of 10 ppm ciprofloxacin within 40 min, with chemical oxygen demand removal of 65-66% in aqueous, and 40-47% in whole including aqueous and catalysts. Ciprofloxacin at high concentration, other fluoroquinolones and tetracycline can also be effectively degraded. These data demonstrate the Al2O3 nanotubes prepared by the nature-inspired ureasolysis method has unique features and great potentials for antibiotics degradation.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mei-Yun Xiao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun-Feng Tang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Qian Li
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Zhou Zhu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China; State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China.
| |
Collapse
|
3
|
Yang XT, Wang ZW, Tan X, Yin XY, Sun Y, Zhu YZ, Wang HF. Cr 3+-ZnGa 2O 4@Pt for Light-Triggered Dark Catalytic Regeneration of Nicotinamide Coenzymes without Other Electron Mediators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5273-5282. [PMID: 36648244 DOI: 10.1021/acsami.2c19907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photocatalysts for regeneration of reduced nicotinamide adenine dinucleotide (NADH) usually work with continuous lighting and electron mediators, which causes impracticability under dark conditions, risk of NADH reoxidation, and complex separation. To solve these problems, we present a new catalyst of tiny Pt nanoparticles photodeposited on chromium-doped zinc gallate (CZGO@Pt). Upon being light-triggered, the photogenerated electrons are stored in the traps of CZGO and then gradually released and transferred by Pt to directly reduce NAD+ after stoppage of illumination. Three lighting modes are compared to demonstrate the feasibility and advantage of this light-triggered dark catalysis. Within 4 h of reaction, the in-the-dark NADH yield reaches 75.0% under prelighting CZGO@5%Pt and it reaches 80.0% under prelighting CZGO@5%Pt and triethanolamine (TEOA). However, the NADH yield is only 53.5% under continuous lighting of CZGO@5%Pt, TEOA, and NAD+. Consequently, the light-triggered dark catalytic regeneration of NADH not only saves energy and operates easily but also significantly elevates the NADH yield. It thus would secure wide interests and applications in places where no light or only intermittent light is available.
Collapse
Affiliation(s)
- Xiao-Ting Yang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Xin Tan
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Yang Sun
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Yi-Zhou Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| |
Collapse
|
4
|
Hou H, Yang W, Sun H, Zhang H, Feng X, Kuang Y. Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. Catal Letters 2022. [DOI: 10.1007/s10562-022-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|