1
|
Liao M, Zhang K, Luo C, Zeng H. Al-Based MOF-Derived Amorphous/Crystalline Heterophase Cobalt Sulfides as High-Performance Supercapacitor Materials. Inorg Chem 2024; 63:14074-14085. [PMID: 39012784 DOI: 10.1021/acs.inorgchem.4c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Transition metal sulfides (TMSs) are promising electrode materials due to their high theoretical specific capacitance, but sluggish charge transfer kinetics and an insufficient number of active sites hamper their applications in supercapacitors. In this work, a self-sacrificial template strategy was employed to construct Al-based MOF-derived metal sulfides with an amorphous/crystalline (a/c) heterophase, in which aluminum, nitrogen, and carbon species were evenly coordinated in the amorphous phase. The metal sulfides a/c-Co(Al)S-1 and a/c-Co(Al)S-2, originating from the CAU-1 and CoAl-MOF on NF as self-sacrificial templates, were investigated as electrode materials, respectively, in which the a/c-Co(Al)S-1 showed a more excellent electrochemical performance. Through acid etching CAU-1 using Co(NO3)2 followed by sulfuration, the a/c-Co(Al)S-1 with a unique 3D network structure was constructed, whose unique architecture expanded the interfacial contact with the electrolyte and provided vast active sites, accelerating the charge transportation and ion diffusion. Notably, the a/c-Co(Al)S-1 displayed a high specific charge of 1791.8 C g-1 at 1 A g-1, satisfactory cycle stability, and good rate capability. The corresponding assembled a/c-Co(Al)S-1//AC device delivered a high energy density of 77.1 Wh kg-1 at 800 W kg-1 and good durability (87.4% capacitance retention over 10 000 cycles).
Collapse
Affiliation(s)
- Mengchen Liao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kai Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chaowei Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
2
|
Zhao Z, Ke X, Huang J, Zhang Z, Wu Y, Huang G, Tan J, Liu X, Mei Y, Chu J. Design and Synthesis of Transferrable Macro-Sized Continuous Free-Standing Metal-Organic Framework Films for Biosensor Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310189. [PMID: 38468446 PMCID: PMC11187891 DOI: 10.1002/advs.202310189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Xinyi Ke
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Yue Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xuanyong Liu
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Junhao Chu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
| |
Collapse
|
3
|
Ke X, Zhao Z, Huang J, Liu C, Huang G, Tan J, Zhu H, Xiao Z, Liu X, Mei Y, Chu J. Growth Control of Metal-Organic Framework Films on Marine Biological Carbon and Their Potential-Dependent Dopamine Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12005-12016. [PMID: 36827513 DOI: 10.1021/acsami.2c20517] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ever-evolving advancements in films have fueled many of the developments in the field of electrochemical sensors. For biosensor application platforms, the fabrication of metal-organic framework (MOF) films on microscopically structured substrates is of tremendous importance. However, fabrication of MOF film-based electrodes always exhibits unsatisfactory performance, and the mechanisms of the fabrication and sensing application of the corresponding composites also need to be explored. Here, we report the fabrication of conformal MIL-53 (Fe) films on carbonized natural seaweed with the assistance of an oxide nanomembrane and a potential-dependent electrochemical dopamine (DA) sensor. The geometry and structure of the composite can be conveniently tuned by the experimental parameters, while the sensing performance is significantly influenced by the applied potential. The obtained sensor demonstrates ultrahigh sensitivity, a wide linear range, a low limit of detection, and a good distinction between DA and ascorbic acid at an optimized potential of 0.3 V. The underneath mechanism is investigated in detail with the help of theoretical calculations. This work bridges the natural material and MOF films and is promising for future biosensing applications.
Collapse
Affiliation(s)
- Xinyi Ke
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, P. R. China
- International Institute for Intelligent Nanorobots and Nanosystems, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, P. R. China
| | - Zhe Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, P. R. China
- International Institute for Intelligent Nanorobots and Nanosystems, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, P. R. China
| | - Jiayuan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Chang Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- International Institute for Intelligent Nanorobots and Nanosystems, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Hongqin Zhu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhijia Xiao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- International Institute for Intelligent Nanorobots and Nanosystems, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, P. R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, P. R. China
- International Institute for Intelligent Nanorobots and Nanosystems, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, P. R. China
| | - Junhao Chu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|