1
|
Liu Y, Luo Y, Gao Y, Ma Y, Huang Z, Yang Y, Li X, Li S. Carrier-Free Biomimetic Organic Nanoparticles with Super-High Drug Loading for Targeted NIR-II Excitable Triple-Modal Bioimaging and Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406003. [PMID: 39420861 DOI: 10.1002/smll.202406003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Multimodal near-infrared II (NIR-II) theranostics combined with nanotechnology have emerged as promising treatments for cancer due to their noninvasive and high spatiotemporal nature. Traditional NIR-II theranostics typically comprise useless and massive inert carriers, resulting in low drug loading capacity, reduced therapeutic effects, and potential biotoxicity. To overcome these limitations, this work reports carrier-free NIR-II theranostics simultaneously with high drug loading capacity and multimodal NIR-II imaging capabilities for cancer phototheranostics in the NIR-II window. Carrier-free BTA nanoparticles (NPs) are prepared by self-assembling the NIR-II responsive conjugated oligomer BTA without adding coating agents; these NPs exhibited 100% drug loading and high-performance NIR-II theranostic capabilities. Cancer cell membranes are camouflaged on carrier-free BTA NPs to provide homologous targeting ability, enhanced stability, and 77.8% drug loading. Both in vitro and in vivo studies have indicated that biomimetic NPs provide efficient triple-modal guidance for NIR-II fluorescence, photoacoustic, and photothermal imaging and complete tumor elimination via photothermal therapy (PTT). Additionally, theranostics-based treatments with good biosecurity are demonstrated. This study contributes a new strategy for the design of high-drug-loading NIR-II theranostics and further promotes the clinical translation of theranostic agents.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yujie Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Wang Z, Wang J, Xu W, Qiao L, Xie Y, Gao M, Wang D, Li C. Fasting-Mimicking Diet Facilitates Anti-tumor Therapeutic Effects by Nutrient-Sensitive Nanocomposites. Adv Healthc Mater 2024; 13:e2400943. [PMID: 38856967 DOI: 10.1002/adhm.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.
Collapse
Affiliation(s)
- Zhifang Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wencheng Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
3
|
Li G, Bao Y, Zhang H, Wang J, Wu X, Yan R, Wang Z, Jin Y. Enhanced catalytic activity of Fe 3O 4-carbon dots complex in the Fenton reaction for enhanced immunotherapeutic and oxygenation effects. J Colloid Interface Sci 2024; 668:618-633. [PMID: 38696990 DOI: 10.1016/j.jcis.2024.04.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.
Collapse
Affiliation(s)
- Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Pharmacy, Qiqihaer Medical University, Qiqihaer 161006, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
4
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
5
|
Xia J, Quan H, Huang Y, Zhang Z, Zhang Y, Lu B. Side Chain Programming Synchronously Enhances the Photothermal Conversion Efficiency and Photodynamic Activity of A-D-A Photosensitizers. ACS Macro Lett 2024; 13:489-494. [PMID: 38607650 DOI: 10.1021/acsmacrolett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuehua Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
6
|
Lu B, Xia J, Quan H, Huang Y, Zhang Z, Zhan X. End Group Engineering for Constructing A-D-A Fused-Ring Photosensitizers with Balanced Phototheranostics Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307664. [PMID: 37972254 DOI: 10.1002/smll.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Tang C, Pan Y, Wei Z, Liu L, Xu J, Han W, Cai Y. Side-chain engineering of organic photothermal agents for boosting further red-shifted absorption and higher photothermal therapeutic effect. Colloids Surf B Biointerfaces 2024; 233:113611. [PMID: 37924748 DOI: 10.1016/j.colsurfb.2023.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Although organic photothermal agents (PTAs) have been extensively studied in preclinical cancer photothermal therapy (PTT), the internal mechanism, particularly the impact of side chains on photothermal performance, remains inadequately investigated. Herein, we conducted a systematic comparison of the photothermal properties between two organic molecules, namely O-IDTBR with four n-octyl chains and EH-IDTBR with four 2-ethylhexyl chains. With the same conjugated main structure, both O-IDTBR and EH-IDTBR exhibited nearly identical absorption properties (with a peak at 629 nm) in their molecular states. Interestingly, after the formation of nanoparticles (NPs), O-IDTBR NPs with linear alkyl chains exhibit a further red-shifted absorption onset (peak at 711 nm) compared to EH-IDTBR NPs (peak at 662 nm) with branched alkyl chains. Additionally, the photothermal conversion efficiency of O-IDTBR NPs was calculated of 33.7%, which is higher than that of EH-IDTBR NPs (27.7%). This can be attributed to the fact that linear alkyl chains of O-IDTBR NPs promote more intramolecular motions at the aggregated state by extending intermolecular distance and distorting molecular conformation. Therefore, the nonradiative thermal deactivation-induced photothermal property can be further enhanced. Through both in vitro and in vivo experiments, O-IDTBR NPs exhibit effective PTT effect and excellent biocompatibility. This study not only introduces a novel PTA but also opens new avenues for exploring organic optical nano-agents through side-chain engineering to adjust intramolecular motions at the aggregated state.
Collapse
Affiliation(s)
- Chuanchao Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, People's Republic of China.
| | - Wei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
8
|
Xie X, Wang K, Zeng J, Xu MY, Qu XH, Xiang ZB, Tou FF, Huang S, Han XJ. A novel polymer enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy. J Nanobiotechnology 2023; 21:497. [PMID: 38124097 PMCID: PMC10734082 DOI: 10.1186/s12951-023-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Xin Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ke Wang
- Department of Clinical Laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jie Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Miao-Yan Xu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zheng-Bin Xiang
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fang-Fang Tou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaorong Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
9
|
Gao Y, Liu Y, Li X, Wang H, Yang Y, Luo Y, Wan Y, Lee CS, Li S, Zhang XH. A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-II Photo-Immunotherapy of Metastatic Tumor. NANO-MICRO LETTERS 2023; 16:21. [PMID: 37982963 PMCID: PMC10660627 DOI: 10.1007/s40820-023-01219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023]
Abstract
Massive efforts have been concentrated on the advance of eminent near-infrared (NIR) photothermal materials (PTMs) in the NIR-II window (1000-1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-II-responsive organic PTMs was explored, and their photothermal conversion efficiencies (PCEs) still remain relatively low. Herein, donor-acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-II window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-II absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-II light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-II window, without any side-effect. Moreover, by combining with PD-1 antibody, the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-II window, offering a new horizon in developing radical-characteristic NIR-II photothermal materials.
Collapse
Affiliation(s)
- Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yu Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
10
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Lu B, Huang Y, Quan H, Xia J, Wang J, Ding Y, Wang Y, Yao Y. Mitochondria-Targeting Multimodal Phototheranostics Based on Triphenylphosphonium Cation Modified Amphiphilic Pillararenes and A-D-A Fused-Ring Photosensitizers. ACS Macro Lett 2023; 12:1365-1371. [PMID: 37737579 DOI: 10.1021/acsmacrolett.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Tumor-targeting phototheranostics has gradually developed as a powerful tool for the precise diagnosis and treatment of cancer. However, the designs of tumor-targeting phototheranostics agents with excellent multimodal phototherapy and fluorescence imaging (FLI) capability, as well as very few components, are still scarce and challenging for cancer treatment. Herein, a mitochondria-targeting multimodal phototheranostics system has been constructed by combining a designed amphiphilic pillararene WP5-2PEG-2TPP and the A-D-A fused-ring photosensitizer F8CA5. WP5-2PEG-2TPP is constructed by attaching the triphenylphosphonium cations to our previously reported dual PEG-functionalized amphiphilic pillararene, which can self-assemble into regular spherical nanocarriers with outstanding mitochondria targeting and water solubility. The A-D-A photosensitizer F8CA5 containing two methyl cyanoacetate group modified end groups displays superior photothermal conversion ability and dual type I/II photodynamic activity as well as strong NIR fluorescence emission. Through their strong union, multifunctional mitochondria-targeting phototheranostics agent F8CA5 NPs were obtained to be applied into FLI-guided synergistic photothermal and type I/II photodynamic therapy. As a result, F8CA5 NPs show good mitochondria-targeting and phototherapy effects in various tumor cells. Not only that, they can combat tumor hypoxia, which hinders the efficacy of photodynamic therapy. Therefore, this work provides a creative ideal for the construction of multifunctional tumor-targeting phototheranostic agents with excellent performance.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jiacheng Xia
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
12
|
Xie Q, Tang J, Guo S, Zhao Q, Li S. Recent Progress of Preparation Strategies in Organic Nanoparticles for Cancer Phototherapeutics. Molecules 2023; 28:6038. [PMID: 37630290 PMCID: PMC10459389 DOI: 10.3390/molecules28166038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Phototherapy has the advantages of being a highly targeted, less toxic, less invasive, and repeatable treatment, compared with conventional treatment methods such as surgery, chemotherapy, and radiotherapy. The preparation strategies are significant in order to determine the physical and chemical properties of nanoparticles. However, choosing appropriate preparation strategies to meet applications is still challenging. This review summarizes the recent progress of preparation strategies in organic nanoparticles, mainly focusing on the principles, methods, and advantages of nanopreparation strategies. In addition, typical examples of cancer phototherapeutics are introduced in detail to inform the choice of appropriate preparation strategies. The relative future trend and outlook are preliminarily proposed.
Collapse
Affiliation(s)
| | | | | | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| |
Collapse
|
13
|
Lu B, Quan H, Zhang Z, Li T, Wang J, Ding Y, Wang Y, Zhan X, Yao Y. End Group Nonplanarization Enhances Phototherapy Efficacy of A-D-A Fused-Ring Photosensitizer for Tumor Phototherapy. NANO LETTERS 2023; 23:2831-2838. [PMID: 36897125 DOI: 10.1021/acs.nanolett.3c00119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the phototherapy efficacy of organic photosensitizers through molecular design is a fascinating but challenging task. Herein, we propose a simple design strategy to first realize the generation of superoxide anion radical (O2•-) by A-D-A fused-ring photosensitizers. Through replacing one cyano group of traditional end group with an ester group, we designed a novel nonplanar end group (A unit) to synthesize a novel A-D-A photosensitizer F8CA. In a comparison with its counterpart F8CN with the traditional end group, F8CA displays more loose packing and larger spin-orbit coupling constants. The F8CA nanoparticles showed higher photodynamic activities with the generation capability of singlet oxygen (1O2), hydroxyl radical (•OH), and O2•-, while F8CN nanoparticles could only generate 1O2 and •OH. In addition, F8CA nanoparticles still remain high photothermal conversion efficiency (61%). As a result, F8CA nanoparticles perform well in hypoxia-tolerant tumor phototherapy. This study brings an effective design thought for A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Tengfei Li
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
14
|
Wang Z, Yang L, Li Y, Song S, Qu J, He R, Ren S, Gong P. An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj03231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly permeable targeted chemotherapy is highly desired for treating non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Handong, 273165, China
| | - Yake Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Shaohua Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Juan Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Rui He
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Shanshan Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Peiwei Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, 710072, China
| |
Collapse
|