1
|
Zhang S, Yin L, Liu Q, Hai G, Du Y. Lanthanide-Induced Ligand Effect to Regulate the Electronic Structure of Platinum-Lanthanide Nanoalloys for Efficient Methanol Oxidation. ACS NANO 2024; 18:25754-25764. [PMID: 39102015 DOI: 10.1021/acsnano.4c08156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The ligand effect in alloy catalysts is one of the decisive parameters of the catalytic performance. However, the strong interrelation between the ligand effect and the geometric effect of the active atom and its neighbors as well as the systematic alteration of the microenvironment of the active site makes the active mechanism unclear. Herein, Pt3Tm, Pt3Yb, and Pt3Lu with a cubic crystal system (Pm-3m) were selected. With the difference of Pt-Pt interatomic distance within 0.02 Å, we minimize the geometric effect to realize the disentanglement of the system. Through precise characterization, due to the low electronegativity of Ln (Ln = Tm, Yb, and Lu) and the ligand effect in the alloy, the electronic structure of Pt is continuously optimized, which improves the electrochemical methanol oxidation reaction (MOR) performance. The Ln electronegativity has a linear relationship with the MOR performance, and Pt3Yb/C achieves a high mass activity of up to 11.61 A mgPt-1, which is the highest value reported so far in Pt-based electrocatalysts. The results obtained in this study provide fundamental insights into the mechanism of ligand effects on the enhancement of electrochemical activity in rare-earth nanoalloys.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qian Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Aravind P, Vasudevan S. Glucose driven self-sustained electro-Fenton platform for remediation of 2,4-dichlorophenoxy herbicide contaminated water. ENVIRONMENTAL TECHNOLOGY 2024; 45:61-72. [PMID: 35793114 DOI: 10.1080/09593330.2022.2099310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
As electrochemical oxidation technologies are energy-intensive, they are sparsely included in wastewater treatment plants. This study demonstrates a self-reliable glucose driven-electro-Fenton (GD-EF) system for decontamination of 2,4-dichlorophenoxy (2,4-D) herbicides without the supply of external current or voltage. It incorporates a cathode (graphite) which accepts electrons from abiotic glucose oxidation at anode (Pt/Ti or BDD or PbO2/Cu/Ti) and generates in situ H2O2. For the first time, the ability of Pt/Ti, BDD, and PbO2/Cu/Ti anodes in GD-EF and their influence on 2,4-D decontamination rate have been studied. Pt/Ti and PbO2/Cu/Ti exhibited maximum power densities of 60.42 and 219.3 µW cm-2, respectively than BDD (2.418 µW cm-2). Even though Pt/Ti fuel cell exhibited lower power density than the PbO2/Cu/Ti - fuel cell, it had a faster 2,4-D degradation rate of k = 18 × 10-3 s-1. The generated cathodic potential of -0.275 mV vs. Ag/AgCl in the Pt/Ti-fuel cell was sufficient to produce 23 mg L-1h-1 of H2O2. The high performance liquid chromatography analysis reveals the complete transformation of 2,4-D in 540 min and its degradation by 95% in 1080 min. This finding paves the way for greener decontamination of bio-recalcitrant herbicides with zero electrochemical energy consumption.
Collapse
Affiliation(s)
- Priyadharshini Aravind
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Subramanyan Vasudevan
- Electro Inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| |
Collapse
|
3
|
Qiao M, Wei Y, Dong YJ, Wang JX, Chen JF. A Universal Approach for Controllable Synthesis of Homogeneously Alloyed PtM Nanoflowers toward Enhanced Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307283. [PMID: 38109154 DOI: 10.1002/smll.202307283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1 , 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan-Jun Dong
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Zhang C, Chen Z, Yang H, Luo Y, Qun Tian Z, Kang Shen P. Surface-structure tailoring of Dendritic PtCo nanowires for efficient oxygen reduction reaction. J Colloid Interface Sci 2023; 652:1597-1608. [PMID: 37666192 DOI: 10.1016/j.jcis.2023.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Platinum-based alloy nanowire catalysts demonstrates great promise as electrocatalysts to facilitate the cathodic oxygen reduction reaction (ORR) of proton exchange membrane fuel cells (PEMFCs). However, it is still challenge to further improve the Pt atom utilization of Pt based nanowires featuring inherent structural stability. Herein, a new structure of PtCo nanowire with nanodendrites was developed using CO-assistance solvent thermal method. The dendrite structure with an average length of about 7 nm are characterized by a Pt-rich surface and the high-index facets of {533}, {331} and {311}, and grows from the ultra-fine wire structure with an average diameter of about 3 nm. PtCo nanowires with nanodendrites developed in this work shows outstanding performance for ORR, in which its mass activity of 1.036 A/mgPt is 5.76 times, 1.74 times higher than that of commercial Pt/C (0.180 A/mgPt) and PtCo nanowires without nanodendrites (0.595 A/mgPt), and its mass activity loss is only 18% under the accelerated durability tests (ADTs) for 5k cycles. The significant improvement is attributed to high exposure of active sites induced by the dendrite structure with Pt-rich surface with the high-index facets and Pt-rich surface. This structure may provide a new idea for developing novel 1D Pt based electrocatalysts.
Collapse
Affiliation(s)
- Chenyue Zhang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zhenyu Chen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Huanzheng Yang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Yuanyan Luo
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.
| |
Collapse
|
5
|
Liang J, Cheng H, Zhao B, Hu Q, Xing Z, Zhang Y, Niu L. Boosting the Methanol Oxidation Reaction Activity of Pt-Ru Clusters via Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302149. [PMID: 37194975 DOI: 10.1002/smll.202302149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO* to CO2 . This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99 mW cm - 2 mg Pt - 1 ${\rm{mW\ cm}}^{ - 2}{\rm{\ mg}}_{{\rm{Pt}}}^{ - 1}$ ). The fabricated system can be potentially used for the efficient fabrication of DMFCs.
Collapse
Affiliation(s)
- Jiahui Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Heyun Cheng
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Bolin Zhao
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zihao Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Ren Y, Zang Z, Lv C, Li B, Li L, Yang X, Lu Z, Yu X, Zhang X. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2023; 640:801-808. [PMID: 36905889 DOI: 10.1016/j.jcis.2023.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Developing highly durable and active catalysts with the morphology of structurally robust nanoframes toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acidic environment is crucial but still a great challenge to completely achieve in a single material. Herein, PtCuCo nanoframes (PtCuCo NFs) with internal support structures as enhanced bifunctional electrocatalysts were prepared by a facile one-pot approach. PtCuCo NFs exhibited remarkable activity and durability for ORR and MOR owing to the ternary compositions and the structure-fortifying frame structures. Impressively, the specific/mass activity of PtCuCo NFs were 12.8/7.5 times as large as that of commercial Pt/C for ORR in perchloric acid solution. For MOR in sulfuric acid solution, the mass/specific activity of PtCuCo NFs was 1.66 A mgPt-1/4.24 mA cm-2, which was 5.4/9.4 times as large as that of Pt/C. This work may provide a promising nanoframe material to develop dual catalysts for fuel cells.
Collapse
Affiliation(s)
- Yangyang Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zehao Zang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chenhao Lv
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Beibei Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
7
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
8
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Qiao M, Meng FY, Wu H, Wei Y, Zeng XF, Wang JX. PtCuRu Nanoflowers with Ru-Rich Edge for Efficient Fuel-Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204720. [PMID: 36269882 DOI: 10.1002/smll.202204720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Engineering low platinum loaded defects enriched PtxCo wrapped by carbon layers for efficient methanol electrooxidation with CO-free dominant. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Li G, Wang S, Li H, Guo P, Li Y, Ji D, Zhao X. Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4210. [PMID: 36500832 PMCID: PMC9736472 DOI: 10.3390/nano12234210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Palladium (Pd) nanostructures are highly active non-platinum anodic electrocatalysts in alkaline direct methanol fuel cells (DMFCs), and their electrocatalytic performance relies highly on their morphology and composition. This study reports the preparation, characterizations, and electrocatalytic properties of palladium-copper alloys loaded on the carbon support. XC-72 was used as a support, and hydrazine hydrate served as a reducing agent. PdxCuy/XC-72 nanoalloy catalysts were prepared in a one-step chemical reduction process with different ratios of Pd and Cu. A range of analytical techniques was used to characterize the microstructure and electronic properties of the catalysts, including transmission electron microscopy (TEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma emission spectroscopy (ICP-OES). Benefiting from excellent electronic structure, Pd3Cu2/XC-72 achieves higher mass activity enhancement and improves durability for MOR. Considering the simple synthesis, excellent activity, and long-term stability, PdxCuy/XC-72 anodic electrocatalysts will be highly promising in alkaline DMFCs.
Collapse
Affiliation(s)
- Guixian Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shoudeng Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Hongwei Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Peng Guo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Yanru Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Basic Research Innovation Group, Project of Gansu Province, Lanzhou 730050, China
| | - Dong Ji
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xinhong Zhao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
12
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
13
|
Zhang Z, Li J, Liu S, Zhou X, Xu L, Tian X, Yang J, Tang Y. Self-Templating-Oriented Manipulation of Ultrafine Pt 3 Cu Alloyed Nanoparticles into Asymmetric Porous Bowl-Shaped Configuration for High-Efficiency Methanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202782. [PMID: 35754168 DOI: 10.1002/smll.202202782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The precise and comprehensive manipulation of the component, size, and geometric nano-architecture of platinum-based electrocatalysts into porous and hollow structure can effectively impart the catalysts with substantially improved electrochemical performance, yet remain formidably challenging. Herein, a straightforward fabrication of porous platinum-copper alloyed nanobowls (abbreviated as Pt3 Cu NBs hereafter) assembled by ultrafine nanoparticles (≈2.9 nm) via a one-pot hydrothermal approach with the assistance of a structure-directing agent of N,N'-methylenebisacrylamide (MBAA) is reported. The involvement of MBAA plays a decisive role in the formation of Pt-MBAA complex solid nanospheres, which serve as the self-sacrificial reactive template for the deposition/growth of Pt3 Cu nanoparticles and the eventual formation of the asymmetric open-shelled nanobowls. Benefitting from the 3D sufficient accessibility of exterior/interior surfaces, high atom-utilization efficiency, and PtCu bimetallic alloy synergy, the self-supported Pt3 Cu NBs demonstrate remarkably enhanced activity, better anti-poisoning capability, and reinforced robustness for the methanol oxidation reaction (MOR) as compared with the commercial Pt black benchmark, exhibiting great application promises in practical fuel cell systems. It is envisaged that the innovative self-templated synthetic strategy outlined here may provide a perspective to design a range of porous bowl-shaped high-performance nanocatalysts.
Collapse
Affiliation(s)
- Zhenbo Zhang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jing Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shuyun Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xue Zhou
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems and Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|