1
|
Yu R, Fan S. Enhanced Free-Electron-Photon Interactions at the Topological Transition in van der Waals Heterostructures. NANO LETTERS 2025; 25:529-536. [PMID: 39686910 DOI: 10.1021/acs.nanolett.4c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Heterostructures composed of graphene and molybdenum trioxide (MoO3) can support in-plane hybrid polaritons in the infrared. The isofrequency contour for these subwavelength polaritons can exhibit a quasi-flat region when the topological transition occurs as the doping level of graphene is tuned. Such a topological transition can be useful for optical sensing and imaging at nanoscale. Here, by analyzing electron energy-loss spectroscopy (EELS), we theoretically demonstrate that free-electron-photon interactions in the heterostructure can be enhanced due to this quasi-flat region. Moreover, the free-electron-photon interaction is sensitive to the electron trajectory and is robust against certain types of defects in the structure. Furthermore, we show that the free-electron-photon interaction can undergo an ultrafast subpicosecond modulation by optical pumping and heating of graphene. Our findings may pave the way toward dynamical electron beam shaping, free-electron-based quantum light sources, and quantum sensing.
Collapse
Affiliation(s)
- Renwen Yu
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, United States
| | - Shanhui Fan
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Li J, Li Q, Feng H, Jiao K, Zhang C, Weng S, Yang L. Tuning d-Orbital Electronic Structure via Au-Intercalated Two-Dimensional Fe 3GeTe 2 to Increase Surface Plasmon Activity. J Phys Chem Lett 2024; 15:1818-1827. [PMID: 38330253 DOI: 10.1021/acs.jpclett.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
While extensive research has been dedicated to plasmon tuning within non-noble metals, prior investigations primarily concentrated on markedly augmenting the inherently low concentration of free carriers in materials with minimal consideration given to the influence of electron orbitals on surface plasmons. Here, we achieve successful intercalation of Au atoms into the layered structure of Fe3GeTe2 (FGT), thereby exerting control over the orbital electronic states or structure of FGT. This intervention not only amplifies the charge density and electron mobility but also mitigates the loss associated with interband transitions, resulting in increased two-dimensional FGT surface plasmon activity. As a consequence, Au-intercalated FGT detects crystal violet molecules as a surface-enhanced Raman scattering substrate, and the detection lines are 3 orders of magnitude higher than before Au intercalation. Our work provides insight for further studies on plasmon effects and the relation between surface plasmon resonance behavior and electronic structures.
Collapse
Affiliation(s)
- Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Qiqi Li
- University of Science & Technology of China, Hefei 230026, Anhui, China
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haochuan Feng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Keke Jiao
- University of Science & Technology of China, Hefei 230026, Anhui, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
3
|
Yang H, Konečná A, Xu X, Cheong SW, Batson PE, García de Abajo FJ, Garfunkel E. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS NANO 2022; 16:18795-18805. [PMID: 36317944 DOI: 10.1021/acsnano.2c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO3 (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal. The inhomogeneous doping leads to distinctive localized infrared surface plasmons, including a previously unobserved plasmon mode that is highly confined between high- and low-doping regions. We further quantify the carrier density, effective mass, and dopant activation percentage by EELS and transport measurements on the bulk single crystals of BLSO. These results not only represent a practical approach for studying heterogeneities in solids and understanding structure-property relationships at the nanoscale, but also demonstrate the possibility of infrared plasmon tuning by leveraging nanoscale doping texture.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Andrea Konečná
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- Central European Institute of Technology, Brno University of Technology, 61200Brno, Czech Republic
| | - Xianghan Xu
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - Philip E Batson
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| | - Eric Garfunkel
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey08854, United States
| |
Collapse
|