1
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
3
|
Xie H, Tan T, Li Q, Li T. Revolutionizing HER-2 assessment: multidimensional radiomics in breast cancer diagnosis. BMC Cancer 2025; 25:265. [PMID: 39953417 PMCID: PMC11829378 DOI: 10.1186/s12885-025-13549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE To explore the application value of multidimensional radiomics based on ultrasound imaging in assessing the HER-2 status of breast cancer. METHODS We retrospectively analyzed the ultrasound imaging, clinical, and laboratory data of 850 breast cancer patients from two centers. During the study, we first utilized automation technology to accurately delineate the tumor region of interest (ROI) in breast ultrasound imaging. Subsequently, the intra-tumoral ROI was automatically expanded by 1 cm and 2 cm to obtain larger areas including the peritumoral tissues, and further generated three-dimensional volumes of interest (VOI) within and around the tumor. Through the K-means clustering method, we identified the sub-regions of interest within the ROI and extracted corresponding radiomic features using the pyradiomics toolkit. Additionally, we employed an advanced Vision Transformer (VIT) model to perform deep radiomic feature extraction on the ROI. Based on feature selection, we utilized various machine learning algorithms for modeling and analysis to assess the HER-2 status of breast cancer. RESULTS After comprehensive comparison and evaluation of multiple models, we found that the diagnostic model based on multidimensional feature fusion exhibited excellent diagnostic performance in assessing the HER-2 status of breast cancer. In the training set, the model achieved an accuracy of 0.949 and an AUC value of 0.990 (95% CI: 0.986-0.995), with outstanding key performance indicators such as sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. The model showed good generalization in the test set, with accuracy 0.747, AUC 0.848 (95% CI: 0.791-0.904), and sensitivity 0.911. Specificity was slightly lower, but other indicators remained high, and the F1 score was 0.703. Calibration and clinical decision curves further confirmed the model's effectiveness and reliability. CONCLUSION This study fully demonstrates that multidimensional breast ultrasonography-based radiomic features can effectively assess the HER-2 status of breast cancer. This finding not only provides new evidence for early diagnosis of breast cancer but also offers new ideas and methods for personalized treatment planning and prognosis assessment.
Collapse
Affiliation(s)
- Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, P. R. China
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, P. R. China
| | - Tao Tan
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, P. R. China
| | - Qing Li
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, P. R. China
- Key Experimental Project of Higher Education Institutes in Hunan Province (Key Laboratory of Tumor Precision Medicine), Chenzhou, 423000, P. R. China
- College of Medical Imaging, Laboratory Diagnostics, and Rehabilitation, Xiangnan University, Chenzhou, 423000, P. R. China
| | - Tao Li
- College of Medical Imaging, Laboratory Diagnostics, and Rehabilitation, Xiangnan University, Chenzhou, 423000, P. R. China.
- Department of Medical, Xiangnan University, Chenzhou, 423000, P. R. China.
| |
Collapse
|
4
|
Liu S, Li H, Xi S, Zhang Y, Sun T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int J Nanomedicine 2025; 20:1443-1490. [PMID: 39925682 PMCID: PMC11806685 DOI: 10.2147/ijn.s457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegenerative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages and the future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Haisong Li
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- International Center of Future Science, Jilin University, Changchun, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Khilar S, Dembinska-Kenner A, Hall H, Syrmos N, Ligarotti GKI, Plaha P, Apostolopoulos V, Chibbaro S, Barbagallo GMV, Ganau M. Towards a New Dawn for Neuro-Oncology: Nanomedicine at the Service of Drug Delivery for Primary and Secondary Brain Tumours. Brain Sci 2025; 15:136. [PMID: 40002469 PMCID: PMC11852924 DOI: 10.3390/brainsci15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background/Objectives: Primary and secondary brain tumours often hold devastating prognoses and low survival rates despite the application of maximal neurosurgical resection, and state-of-the-art radiotherapy and chemotherapy. One limiting factor in their management is that several antineoplastic agents are unable to cross the blood-brain barrier (BBB) to reach the tumour microenvironment. Nanomedicine could hold the potential to become an effective means of drug delivery to overcome previous hurdles towards effective neuro-oncological treatments. (2) Methods: A scoping review following the PRISMA-ScR guidelines and checklist was conducted using key terms input into PubMed to find articles that reflect emerging trends in the utilisation of nanomedicine in drug delivery for primary and secondary brain tumours. (3) Results: The review highlights various strategies by which different nanoparticles can be exploited to bypass the BBB; we provide a synthesis of the literature on the ongoing contributions to therapeutic protocols based on chemotherapy, immunotherapy, focused ultrasound, radiotherapy/radiosurgery, and radio-immunotherapy. (4) Conclusions: The emerging trends summarised in this scoping review indicate encouraging advantageous properties of nanoparticles as potential effective drug delivery mechanisms; however, there are still nanotoxicity issues that largely remain to be addressed before the translation of these innovations from laboratory to clinical practice.
Collapse
Affiliation(s)
- Smita Khilar
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Antonina Dembinska-Kenner
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Helen Hall
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Salvatore Chibbaro
- Neurosurgery Unit, Department of Medical and Surgical Sciences and Neurosciences, Siena University, 53100 Siena, Italy
| | | | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
7
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
8
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
9
|
Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier. ACS NANO 2024; 18:12716-12736. [PMID: 38718220 PMCID: PMC11112986 DOI: 10.1021/acsnano.3c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Collapse
Affiliation(s)
- Zih-An Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiung-Yin Huang
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Kuo-Chen Wei
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, New Taipei Municipal TuCheng
Hospital, New Taipei City 23652, Taiwan
| | - Yun Yen
- Center
for Cancer Translational Research, Tzu Chi
University, Hualien 970374, Taiwan
- Cancer
Center, Taipei Municipal WanFang Hospital, Taipei 116081, Taiwan
| | - I-Ting Chien
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sabiha Runa
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- SRS Medical Communications,
LLC, Cleveland, Ohio 44124, United States
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Peschel JM, Reichel LS, Hoffmann T, Enzensperger C, Schubert US, Traeger A, Gottschaldt M. Modification of Branched Poly(ethylene imine) with d-Fructose for Selective Delivery of siRNA into Human Breast Cancer Cells. Macromol Biosci 2023; 23:e2300135. [PMID: 37565461 DOI: 10.1002/mabi.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Branched poly(ethylene imine) (bPEI) is frequently used in RNA interference (RNAi) experiments as a cationic polymer for the delivery of small interfering RNA (siRNA) because of its ability to form stable polyplexes that facilitate siRNA uptake. However, the use of bPEI in gene delivery is limited by its cytotoxicity and a need for target specificity. In this work, bPEI is modified with d-fructose to improve biocompatibility and target breast cancer cells through the overexpressed GLUT5 transporter. Fructose-substituted bPEI (Fru-bPEI) is accessible in three steps starting from commercially available protected fructopyranosides and bPEI. Several polymers with varying molecular weights, degrees of substitution, and linker positions on d-fructose (C1 and C3) are synthesized and characterized with NMR spectroscopy, size exclusion chromatography, and elemental analysis. In vitro biological screenings show significantly reduced cytotoxicity of 10 kDa bPEI after fructose functionalization, specific uptake of siRNA polyplexes, and targeted knockdown of green fluorescent protein (GFP) in triple-negative breast cancer cells (MDA-MB-231) compared to noncancer cells (HEK293T).
Collapse
Affiliation(s)
- Jan Matthias Peschel
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liên Sabrina Reichel
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Tim Hoffmann
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | | | - Ulrich Sigmar Schubert
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Anja Traeger
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| |
Collapse
|
11
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
12
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
13
|
Zhao M, Hao D, Wu Q, Li Y, Pei Q, Sun T, Wang K, Xie Z. Porphyrin Cholesterol Conjugates for Enhanced Photodynamic Immunotherapy toward Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471051 DOI: 10.1021/acsami.3c05825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Lung cancer is the major cause of cancer death worldwide. Immune checkpoint inhibitors (ICIs) of PD-1/PD-L1 have improved the survival rate in some patients with lung cancer. However, the efficacy of ICIs is limited by the inhibitory tumor immune microenvironment. Herein, we designed porphyrin cholesterol conjugates (TPPC) for synergistic photodynamic therapy (PDT)-immunotherapy for lung cancer. Porphyrin derivatives with great reactive oxygen species (ROS) production efficiency have been applied as photosensitizers in clinics, and cholesterol is one of the main components of the cell membrane. Porphyrin cholesterol conjugates could assemble into nanoparticles (NPs) in the absence of surfactants or amphiphilic polymers. On the other hand, TPPC NP-mediated PDT could accumulate at the tumor site and induce immunogenic cell death to stimulate and recruit antigen-presenting cells to mature and activate T cells, rendering cancer cells more sensitive to ICIs. Importantly, the combination strategy reshapes the tumor immune microenvironment to enhance the antitumor immune response and significantly suppresses the tumor growth and eliminates metastasis. This study offers theoretical guidance for the combination of PDT and ICIs as a potential therapeutic option in lung cancer.
Collapse
Affiliation(s)
- Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
14
|
Benjamin M, Malakar P, Sinha RA, Nasser MW, Batra SK, Siddiqui JA, Chakravarti B. Molecular signaling network and therapeutic developments in breast cancer brain metastasis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100079. [PMID: 36536947 PMCID: PMC7613958 DOI: 10.1016/j.adcanc.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients. Metastatic lesions in the brain originate when the cancer cells detach from a primary breast tumor and establish metastatic lesions and infiltrate near and distant organs via systemic blood circulation by traversing the BBB. The colonization of BC cells in the brain involves a complex interplay in the tumor microenvironment (TME), metastatic cells, and brain cells like endothelial cells, microglia, and astrocytes. BCBM is a significant cause of morbidity and mortality and presents a challenge to developing successful cancer therapy. In this review, we discuss the molecular mechanism of BCBM and novel therapeutic strategies for patients with brain metastatic BC.
Collapse
Affiliation(s)
- Mercilena Benjamin
- Lab Oncology, Dr. B.R.A.I.R.C.H. All India Institute of Medical Sciences, New Delhi, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, West Bengal, 700103, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| |
Collapse
|
15
|
Xu M, Han X, Xiong H, Gao Y, Xu B, Zhu G, Li J. Cancer Nanomedicine: Emerging Strategies and Therapeutic Potentials. Molecules 2023; 28:5145. [PMID: 37446806 DOI: 10.3390/molecules28135145] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer continues to pose a severe threat to global health, making pursuing effective treatments more critical than ever. Traditional therapies, although pivotal in managing cancer, encounter considerable challenges, including drug resistance, poor drug solubility, and difficulties targeting tumors, specifically limiting their overall efficacy. Nanomedicine's application in cancer therapy signals a new epoch, distinguished by the improvement of the specificity, efficacy, and tolerability of cancer treatments. This review explores the mechanisms and advantages of nanoparticle-mediated drug delivery, highlighting passive and active targeting strategies. Furthermore, it explores the transformative potential of nanomedicine in tumor therapeutics, delving into its applications across various treatment modalities, including surgery, chemotherapy, immunotherapy, radiotherapy, photodynamic and photothermal therapy, gene therapy, as well as tumor diagnosis and imaging. Meanwhile, the outlook of nanomedicine in tumor therapeutics is discussed, emphasizing the need for addressing toxicity concerns, improving drug delivery strategies, enhancing carrier stability and controlled release, simplifying nano-design, and exploring novel manufacturing technologies. Overall, integrating nanomedicine in cancer treatment holds immense potential for revolutionizing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hongtai Xiong
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijie Gao
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
16
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
17
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
20
|
Wei X, Yang M. Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Front Pharmacol 2023; 14:1180794. [PMID: 37089933 PMCID: PMC10117787 DOI: 10.3389/fphar.2023.1180794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer as the most frequent malignancy in women. Drug resistance, metastasis, and immune escape are the major factors affecting patient survival and represent a huge challenge in BC treatment in clinic. The cell- and subcellular organelle-targeting nanoparticles-mediated targeted BC therapy may be an effective modality for immune evasion, metastasis, and drug resistance. Nanocarriers, efficiently delivering small molecules and macromolecules, are used to target subcellular apparatuses with excellent targeting, controlled delivery, and fewer side effects. This study summarizes and critically analyzes the latest organic nanoparticle-mediated subcellular targeted therapeutic based on chemotherapy, gene therapy, immunotherapy, and combination therapy in detail, and discusses the challenges and opportunities of nanoparticle therapy.
Collapse
Affiliation(s)
- Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Ming Yang,
| |
Collapse
|
21
|
Reda M, Ngamcherdtrakul W, Nelson MA, Siriwon N, Wang R, Zaidan HY, Bejan DS, Reda S, Hoang NH, Crumrine NA, Rehwaldt JPC, Bindal A, Mills GB, Gray JW, Yantasee W. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat Commun 2022; 13:4261. [PMID: 35871223 PMCID: PMC9308817 DOI: 10.1038/s41467-022-31926-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-L1 and PD-1 have improved survival in a subset of patients with advanced non-small cell lung cancer (NSCLC). However, only a minority of NSCLC patients respond to ICIs, highlighting the need for superior immunotherapy. Herein, we report on a nanoparticle-based immunotherapy termed ARAC (Antigen Release Agent and Checkpoint Inhibitor) designed to enhance the efficacy of PD-L1 inhibitor. ARAC is a nanoparticle co-delivering PLK1 inhibitor (volasertib) and PD-L1 antibody. PLK1 is a key mitotic kinase that is overexpressed in various cancers including NSCLC and drives cancer growth. Inhibition of PLK1 selectively kills cancer cells and upregulates PD-L1 expression in surviving cancer cells thereby providing opportunity for ARAC targeted delivery in a feedforward manner. ARAC reduces effective doses of volasertib and PD-L1 antibody by 5-fold in a metastatic lung tumor model (LLC-JSP) and the effect is mainly mediated by CD8+ T cells. ARAC also shows efficacy in another lung tumor model (KLN-205), which does not respond to CTLA-4 and PD-1 inhibitor combination. This study highlights a rational combination strategy to augment existing therapies by utilizing our nanoparticle platform that can load multiple cargo types at once. Only a minority of patients with non-small cell lung cancer (NSCLC) respond to immune checkpoint inhibitors. Here the authors design a nanosystem for the co-delivery of a PLK1 inhibitor and PD-L1 antibody, showing anti-tumor immune responses in preclinical lung cancer models.
Collapse
|
22
|
Wang M, Guo S, Lin B, Lv T, Zhang Z, Hu D, Hu A, Xu B, Qi Y, Liu L, Cheng G, Chen Y, Zheng T. Ultrasonic-induced reversible blood–brain barrier opening: Safety evaluation into the cellular level. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
An important function of the blood–brain barrier (BBB) is to protect the central nervous system and maintain its homeostasis, but it is also a major barrier to the intervention and treatment of neurological diseases. Our study aimed at opening the BBB using a noninvasive method, focused ultrasound, screening for 16 different parameter combinations of frequency, peak voltage (Ppeak) and irradiation time. Comparing the results of hematoxylin–eosin staining, serum oxidative damage factor and TUNEL staining under various conditions, we obtained a parameter combination that did not lead to oxidative stress injury and apoptosis: 0.8 mHz + 900 mVpp + 90 s. It will be used as a safety parameter for BBB opening treatment of Parkinson’s disease in our subsequent experiments. In addition, the closing time after the BBB opening was verified in magnetic resonance imaging contrast examination and at the tissue level. It is worth mentioning that, different from previous studies, we focused on damage assessment at cellular and molecular levels.
Collapse
Affiliation(s)
- Mengxin Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Shuyuan Guo
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Bingling Lin
- Department of Imaging, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Tao Lv
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Zhuxia Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Die Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Azhen Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Bingxuan Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Yulong Qi
- Department of Imaging, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Guanxun Cheng
- Department of Imaging, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center , Shenzhen 518036 , China
| |
Collapse
|
23
|
Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022; 13:1025618. [PMID: 36330100 PMCID: PMC9622975 DOI: 10.3389/fphar.2022.1025618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Nano drug delivery system (NDDS) can significantly improve the delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The purpose of this study is to explore the related research fields of NDDS for PC from the perspective of bibliometrics. Methods: Articles and reviews on NDDS for PC published between 2003 and 2022 were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for bibliometric and visual analysis. Results: A total of 1329 papers on NDDS for PC were included. The number of papers showed an upward trend over the past 20 years. The United States contributed the most papers, followed by China, and India. Also, the United States had the highest number of total citations and H-index. The institution with the most papers was Chinese Acad Sci, which was also the most important in international institutional cooperation. Professors Couvreur P and Kazuoka K made great achievements in this field. JOURNAL OF CONTROLLED RELEASE published the most papers and was cited the most. The topics related to the tumor microenvironment such as “tumor microenvironment”, “tumor penetration”, “hypoxia”, “exosome”, and “autophagy”, PC treatment-related topics such as “immunotherapy”, “combination therapy”, “alternating magnetic field/magnetic hyperthermia”, and “ultrasound”, and gene therapy dominated by “siRNA” and “miRNA” were the research hotspots in the field of NDDS for PC. Conclusion: This study systematically uncovered a holistic picture of the performance of NDDS for PC-related literature over the past 20 years. We provided scholars to understand key information in this field with the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
|
24
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
25
|
Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors. Cancers (Basel) 2022; 14:cancers14174123. [PMID: 36077660 PMCID: PMC9454760 DOI: 10.3390/cancers14174123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of economic and health burden worldwide. The commonly used approaches for the treatment of cancer are chemotherapy, radiotherapy, and surgery. Chemotherapy frequently results in undesirable side effects, and cancer cells may develop resistance. Combating drug resistance is a challenging task in cancer treatment. Drug resistance may be intrinsic or acquired and can be due to genetic factors, growth factors, the increased efflux of drugs, DNA repair, and the metabolism of xenobiotics. The strategies used to combat drug resistance include the nanomedicine-based targeted delivery of drugs and genes using different nanocarriers such as gold nanoparticles, peptide-modified nanoparticles, as well as biomimetic and responsive nanoparticles that help to deliver payload at targeted tumor sites and overcome resistance. Gene therapy in combination with chemotherapy aids in this respect. siRNA and miRNA alone or in combination with chemotherapy improve therapeutic response in tumor cells. Some natural substances, such as curcumin, quercetin, tocotrienol, parthenolide, naringin, and cyclosporin-A are also helpful in combating the drug resistance of cancer cells. This manuscript summarizes the mechanism of drug resistance and nanoparticle-based strategies used to combat it.
Collapse
|
26
|
Characterization of PDL1 enhanced siRNA/albumin liposome for effective therapeutic function in lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04298-2. [PMID: 35997823 DOI: 10.1007/s00432-022-04298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The applications of liposomes are limited due to poor structural stability and short drug circulation time. This study aims to build an albumin-based liposomal delivery system to provide strategies for tumor specificity, efficient gene delivery and effective release of albumin liposomes. METHODS In this study, siRNA loaded PDL1-targeted albumin liposome was constructed for the treatment of lung cancer and its function was evaluated. Physical parameters such as particle size, potential and infrared spectrum were detected and microscopic morphology was observed by electron microscopy to detect the binding and uptake capacity of albumin liposome with cells. The optimal preparation process and binding ratio of PDL1-targeted albumin liposome/siRNA complex were determined. RESULTS The constructed siRNA loaded PDL1-targeted albumin liposomes has low toxicity, high loading rate and tumor cell targeted gene therapy ability. Moreover, it increased T cell activation and down-regulated siRNA expression, effectively realizing the inhibition of lung cancer cells. CONCLUSION The results showed that the PDL1-targeted albumin liposome could be used as a high efficient delivery vector of siRNA, and was a high efficient and safe nano vector for tumor targeted gene therapy.
Collapse
|
27
|
Pandey P, Kumar Arya D, Kumar Ramar M, Chidambaram K, Rajinikanth P. Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov Today 2022; 27:2526-2540. [DOI: 10.1016/j.drudis.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
28
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|