1
|
Yao F, Dong K, Ke W, Fang G. Micro/Nano Perovskite Materials for Advanced X-ray Detection and Imaging. ACS NANO 2024; 18:6095-6110. [PMID: 38372495 DOI: 10.1021/acsnano.3c10116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Halide perovskites have emerged as highly promising materials for ionizing radiation detection due to their exceptional characteristics, including a large mobility-lifetime product, strong stopping power, tunable band gap, and cost-effective crystal growth via solution processes. Semiconductor-type X-ray detectors employing various micro/nano perovskite materials have shown impressive progress in achieving heightened sensitivity and lower detection limits. Here, we present a comprehensive review of the applications of micro/nano perovskite materials for direct type X-ray detection, with a focus on the requirements for micro/nano crystal assembly and device properties in advanced X-ray detectors. We explore diverse processing techniques and optoelectronic considerations applied to perovskite X-ray detectors. Additionally, this review highlights the challenges and promising opportunities for perovskite X-ray detector arrays in real-world applications, potentially necessitating further research efforts.
Collapse
Affiliation(s)
- Fang Yao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Kailian Dong
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Gui P, Sun Y, Yang L, Xia Z, Wang S, Wang Z, Chen Z, Zeng W, Ren X, Wang S, Fang G. Surface Microstructure Engineering in MAPbBr 3 Microsheets for Performance-Enhanced Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59955-59963. [PMID: 38085577 DOI: 10.1021/acsami.3c15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Metal halide-perovskite-based photodetectors have recently emerged as a class of promising optoelectronic devices in various fields. Meanwhile, nano/microstructuring perovskite-based photodetectors are a facile integration with complementary metal-oxide semiconductors for miniaturized imaging systems. However, there are still challenges to be overcome in reducing the losses caused by light reflection on the surface of microstructural perovskites. In this work, surface microstructure engineering is employed in MAPbBr3 microsheets for reducing light reflection and improving light absorption, resulting in high-performance perovskite photodetectors. MAPbBr3 microsheets, which possess different surface morphologies of flat, upright hemisphere arrays and inverted hemisphere arrays (IHAs), are fabricated by a simple microstructure template-assisted space confinement process. The light absorption capacity of IHA MAPbBr3 is significantly higher than that of the other two structures. Hence, IHA photodetectors with excellent figures of merit, including low dark current, decent responsivity, and fast speed, are achieved. Furthermore, the noise of the IHA photodetectors is only ∼10-13 A/H z , which results in the superior sensitivity for weak light detection with a specific detectivity up to 1011 Jones. Our results demonstrate that surface engineering is a simple, low-cost, yet effective approach to improve the performance of nano-/micro-optoelectronic devices.
Collapse
Affiliation(s)
- Pengbin Gui
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yanming Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Liangpan Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhaosheng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuxin Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhouyin Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhiliang Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xingang Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
3
|
Li J, Han Z, Liu J, Zou Y, Xu X. Compositional gradient engineering and applications in halide perovskites. Chem Commun (Camb) 2023; 59:5156-5173. [PMID: 37042042 DOI: 10.1039/d3cc00967j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Organic-inorganic halide perovskites (HPs) have attracted respectable interests as active layers in solar cells, light-emitting diodes, photodetectors, etc. Besides the promising optoelectronic properties and solution-processed preparation, the soft lattice in HPs leads to flexible and versatile compositions and structures, providing an effective platform to regulate the bandgaps and optoelectronic properties. However, conventional solution-processed HPs are homogeneous in composition. Therefore, it often requires the cooperation of multiple devices in order to achieve multi-band detection or emission, which increases the complexity of the detection/emission system. In light of this, the construction of a multi-component compositional gradient in a single active layer has promising prospects. In this review, we summarize the gradient engineering methods for different forms of HPs. The advantages and limitations of these methods are compared. Moreover, the entropy-driven ion diffusion favors compositional homogeneity, thus the stability issue of the gradient is also discussed for long-term applications. Furthermore, applications based on these compositional gradient HPs will also be presented, where the gradient bandgap introduced therein can facilitate carrier extraction, and the multi-components on one device facilitate functional integration. It is expected that this review can provide guidance for the further development of gradient HPs and their applications.
Collapse
Affiliation(s)
- Junyu Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zeyao Han
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiaxin Liu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yousheng Zou
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaobao Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Takeuchi A, Kumabe Y, Tachikawa T. Intricate Reaction Pathways on CH 3NH 3PbI 3 Photocatalysts in Aqueous Solution Unraveled by Single-Particle Spectroscopy. J Phys Chem Lett 2023; 14:2565-2572. [PMID: 36880805 DOI: 10.1021/acs.jpclett.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid perovskites such as MAPbI3 (MA+ = CH3NH3+) have emerged as promising materials for solar cells and light-emitting devices. Despite their poor stability against moisture, perovskites work as hydrogen-producing photocatalysts or photosensitizers in perovskite-saturated aqueous solutions. However, the fundamental understanding of how chemical species or support materials in the solution affect the dynamics of the photogenerated charges in perovskites is still insufficient. In this study, we investigated the photoluminescence (PL) properties of MAPbI3 nanoparticles in aqueous media at the single-particle level. A remarkable PL blinking phenomenon, along with significant decreases in the PL intensity and lifetime compared to those in ambient air, suggested temporal fluctuations in the trapping rates of photogenerated holes by chemical species (I- and H3PO2) in the solution. Moreover, electron transfer from the excited MAPbI3 to Pt-modified TiO2 proceeds in a concerted fashion for photocatalytic hydrogen evolution under the dynamic solid-solution equilibrium condition.
Collapse
Affiliation(s)
- Aito Takeuchi
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoshitaka Kumabe
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|